Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Bacteriol ; 197(16): 2704-12, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26055118

ABSTRACT

UNLABELLED: Rhodopsin-encoding microorganisms are common in many environments. However, knowing that rhodopsin genes are present provides little insight into how the host cells utilize light. The genome of the freshwater actinobacterium Rhodoluna lacicola encodes a rhodopsin of the uncharacterized actinorhodopsin family. We hypothesized that actinorhodopsin was a light-activated proton pump and confirmed this by heterologously expressing R. lacicola actinorhodopsin in retinal-producing Escherichia coli. However, cultures of R. lacicola did not pump protons, even though actinorhodopsin mRNA and protein were both detected. Proton pumping in R. lacicola was induced by providing exogenous retinal, suggesting that the cells lacked the retinal cofactor. We used high-performance liquid chromatography (HPLC) and oxidation of accessory pigments to confirm that R. lacicola does not synthesize retinal. These results suggest that in some organisms, the actinorhodopsin gene is constitutively expressed, but rhodopsin-based light capture may require cofactors obtained from the environment. IMPORTANCE: Up to 70% of microbial genomes in some environments are predicted to encode rhodopsins. Because most microbial rhodopsins are light-activated proton pumps, the prevalence of this gene suggests that in some environments, most microorganisms respond to or utilize light energy. Actinorhodopsins were discovered in an analysis of freshwater metagenomic data and subsequently identified in freshwater actinobacterial cultures. We hypothesized that actinorhodopsin from the freshwater actinobacterium Rhodoluna lacicola was a light-activated proton pump and confirmed this by expressing actinorhodopsin in retinal-producing Escherichia coli. Proton pumping in R. lacicola was induced only after both light and retinal were provided, suggesting that the cells lacked the retinal cofactor. These results indicate that photoheterotrophy in this organism and others may require cofactors obtained from the environment.


Subject(s)
Actinomycetales/genetics , Bacterial Proteins/metabolism , Rhodopsins, Microbial/genetics , Actinomycetales/metabolism , Bacterial Proteins/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Proton Pumps/genetics , Proton Pumps/metabolism , RNA, Bacterial/genetics , Rhodopsins, Microbial/metabolism
2.
Appl Environ Microbiol ; 81(10): 3442-50, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25769822

ABSTRACT

Sunlight is captured and converted to chemical energy in illuminated environments. Although (bacterio)chlorophyll-based photosystems have been characterized in detail, retinal-based photosystems, rhodopsins, have only recently been identified as important mediators of light energy capture and conversion. Recent estimates suggest that up to 70% of cells in some environments harbor rhodopsins. However, because rhodopsin autofluorescence is low-comparable to that of carotenoids and significantly less than that of (bacterio)chlorophylls-these estimates are based on metagenomic sequence data, not direct observation. We report here the use of ultrasensitive total internal reflection fluorescence (TIRF) microscopy to distinguish between unpigmented, carotenoid-producing, and rhodopsin-expressing bacteria. Escherichia coli cells were engineered to produce lycopene, ß-carotene, or retinal. A gene encoding an uncharacterized rhodopsin, actinorhodopsin, was cloned into retinal-producing E. coli. The production of correctly folded and membrane-incorporated actinorhodopsin was confirmed via development of pink color in E. coli and SDS-PAGE. Cells expressing carotenoids or actinorhodopsin were imaged by TIRF microscopy. The 561-nm excitation laser specifically illuminated rhodopsin-containing cells, allowing them to be differentiated from unpigmented and carotenoid-containing cells. Furthermore, water samples collected from the Delaware River were shown by PCR to have rhodopsin-containing organisms and were examined by TIRF microscopy. Individual microorganisms that fluoresced under illumination from the 561-nm laser were identified. These results verify the sensitivity of the TIRF microscopy method for visualizing and distinguishing between different molecules with low autofluorescence, making it useful for analyzing natural samples.


Subject(s)
Escherichia coli/chemistry , Escherichia coli/metabolism , Rhodopsin/metabolism , Color , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Gene Expression , Microscopy, Fluorescence , Molecular Sequence Data , Rhodopsin/chemistry , Rhodopsin/genetics
3.
Geobiology ; 12(4): 322-39, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24923179

ABSTRACT

Ferruginous Lake Matano, Indonesia hosts one of the deepest anoxygenic photosynthetic communities on Earth. This community is dominated by low-light adapted, BChl e-synthesizing green sulfur bacteria (GSB), which comprise ~25% of the microbial community immediately below the oxic-anoxic boundary (OAB; 115-120 m in 2010). The size of this community is dependent on the mixing regime within the lake and the depth of the OAB-at ~117 m, the GSB live near their low-light limit. Slow growth and C-fixation rates suggest that the Lake Matano GSB can be supported by sulfide even though it only accumulates to scarcely detectable (low µm to nm) concentrations. A model laboratory strain (Chlorobaculum tepidum) is indeed able to access HS- for oxidation at nm concentrations. Furthermore, the GSB in Lake Matano possess a full complement of S-oxidizing genes. Together, this physiological and genetic information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea, GSB would have contributed little to global ocean primary production, nutrient cycling, and banded iron formation (BIF) deposition in the Precambrian. Before the proliferation of oxygenic photosynthesis, shallower OABs and lower light absorption in the ocean's surface waters would have permitted greater light availability to GSB, potentially leading to a greater role for GSB in global biogeochemical cycles.


Subject(s)
Chlorobi/metabolism , Iron/metabolism , Lakes/chemistry , Photosynthesis , Anaerobiosis , Iron/analysis , Light , Microbial Consortia , Pigments, Biological/analysis
5.
Geobiology ; 9(1): 94-106, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21092069

ABSTRACT

We measured the δ98Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N2. This organism uses a Mo-based nitrate reductase during nitrate utilization and a Mo-based dinitrogenase during N2 fixation under culture conditions here. We also demonstrate that it has a high-affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N2-fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of -0.2‰ to -1.0‰ ± 0.2‰ between cells and media (ε(cells-media)), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of -0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N2, A. variabilis produced fractionations of -0.9 ± 0.1‰ during exponential growth, and -0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter-bound Mo in marine sediments.


Subject(s)
Anabaena variabilis/metabolism , Molybdenum/metabolism , Nitrates/metabolism , Nitrogen Fixation , Geologic Sediments , Isotopes , Models, Biological , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...