Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Protoc ; 17(4): 1142-1188, 2022 04.
Article in English | MEDLINE | ID: mdl-35288718

ABSTRACT

Genetically engineered mouse models (GEMMs) transformed the study of organismal disease phenotypes but are limited by their lengthy generation in embryonic stem cells. Here, we describe methods for rapid and scalable genome engineering in somatic cells of the liver and pancreas through delivery of CRISPR components into living mice. We introduce the spectrum of genetic tools, delineate viral and nonviral CRISPR delivery strategies and describe a series of applications, ranging from gene editing and cancer modeling to chromosome engineering or CRISPR multiplexing and its spatio-temporal control. Beyond experimental design and execution, the protocol describes quantification of genetic and functional editing outcomes, including sequencing approaches, data analysis and interpretation. Compared to traditional knockout mice, somatic GEMMs face an increased risk for mouse-to-mouse variability because of the higher experimental demands of the procedures. The robust protocols described here will help unleash the full potential of somatic genome manipulation. Depending on the delivery method and envisaged application, the protocol takes 3-5 weeks.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms , Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/methods , Liver , Mice , Mice, Knockout , Neoplasms/genetics , Pancreas
2.
Nat Cancer ; 3(3): 318-336, 2022 03.
Article in English | MEDLINE | ID: mdl-35122074

ABSTRACT

KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC. This combination treatment induces cell-cycle arrest and cell death, and initiates a context-dependent remodeling of the immunosuppressive cancer cell secretome. Using a combination of single-cell RNA-sequencing, CRISPR screens and immunophenotyping, we show that this combination therapy promotes intratumor infiltration of cytotoxic and effector T cells, which sensitizes mesenchymal PDAC to PD-L1 immune checkpoint inhibition. Overall, our results open new avenues to target this aggressive and therapy-refractory mesenchymal PDAC subtype.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adenocarcinoma/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Humans , Immune Checkpoint Inhibitors , Pancreatic Neoplasms/drug therapy , Tumor Microenvironment
3.
Nat Commun ; 13(1): 281, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022408

ABSTRACT

SUMOylation is a post-translational modification of proteins that regulates these proteins' localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma.


Subject(s)
Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Mutation , Sumoylation/physiology , Animals , Biomarkers, Tumor , Carbon-Nitrogen Lyases/genetics , Carbon-Nitrogen Lyases/metabolism , Chromatin , DNA Damage/drug effects , DNA Repair/drug effects , Female , Genomic Instability , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Protein Processing, Post-Translational , Sumoylation/drug effects , Sumoylation/genetics , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays
4.
Cancer Discov ; 11(12): 3158-3177, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34282029

ABSTRACT

Biliary tract cancer ranks among the most lethal human malignancies, representing an unmet clinical need. Its abysmal prognosis is tied to an increasing incidence and a fundamental lack of mechanistic knowledge regarding the molecular basis of the disease. Here, we show that the Pdx1-positive extrahepatic biliary epithelium is highly susceptible toward transformation by activated PIK3CAH1047R but refractory to oncogenic KrasG12D. Using genome-wide transposon screens and genetic loss-of-function experiments, we discover context-dependent genetic interactions that drive extrahepatic cholangiocarcinoma (ECC) and show that PI3K signaling output strength and repression of the tumor suppressor p27Kip1 are critical context-specific determinants of tumor formation. This contrasts with the pancreas, where oncogenic Kras in concert with p53 loss is a key cancer driver. Notably, inactivation of p27Kip1 permits KrasG12D-driven ECC development. These studies provide a mechanistic link between PI3K signaling, tissue-specific tumor suppressor barriers, and ECC pathogenesis, and present a novel genetic model of autochthonous ECC and genes driving this highly lethal tumor subtype. SIGNIFICANCE: We used the first genetically engineered mouse model for extrahepatic bile duct carcinoma to identify cancer genes by genome-wide transposon-based mutagenesis screening. Thereby, we show that PI3K signaling output strength and p27Kip1 function are critical determinants for context-specific ECC formation. This article is highlighted in the In This Issue feature, p. 2945.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Animals , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Biliary Tract Neoplasms/genetics , Genes, Tumor Suppressor , Humans , Mice , Phosphatidylinositol 3-Kinases/genetics
5.
JCI Insight ; 5(15)2020 08 06.
Article in English | MEDLINE | ID: mdl-32614802

ABSTRACT

One of the major challenges in using pancreatic cancer patient-derived organoids (PDOs) in precision oncology is the time from biopsy to functional characterization. This is particularly true for endoscopic ultrasound-guided fine-needle aspiration biopsies, typically resulting in specimens with limited tumor cell yield. Here, we tested conditioned media of individual PDOs for cell-free DNA to detect driver mutations already early on during the expansion process to accelerate the genetic characterization of PDOs as well as subsequent functional testing. Importantly, genetic alterations detected in the PDO supernatant, collected as early as 72 hours after biopsy, recapitulate the mutational profile of the primary tumor, indicating suitability of this approach to subject PDOs to drug testing in a reduced time frame. In addition, we demonstrated that this workflow was practicable, even in patients for whom the amount of tumor material was not sufficient for molecular characterization by established means. Together, our findings demonstrate that generating PDOs from very limited biopsy material permits molecular profiling and drug testing. With our approach, this can be achieved in a rapid and feasible fashion with broad implications in clinical practice.


Subject(s)
Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/analysis , Cell-Free Nucleic Acids/genetics , Organoids/pathology , Pancreatic Neoplasms/pathology , Precision Medicine , Animals , Apoptosis , Biomarkers, Tumor/analysis , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Organoids/metabolism , Pancreatic Neoplasms/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Nat Protoc ; 15(2): 266-315, 2020 02.
Article in English | MEDLINE | ID: mdl-31907453

ABSTRACT

Mouse models of human cancer have transformed our ability to link genetics, molecular mechanisms and phenotypes. Both reverse and forward genetics in mice are currently gaining momentum through advances in next-generation sequencing (NGS). Methodologies to analyze sequencing data were, however, developed for humans and hence do not account for species-specific differences in genome structures and experimental setups. Here, we describe standardized computational pipelines specifically tailored to the analysis of mouse genomic data. We present novel tools and workflows for the detection of different alteration types, including single-nucleotide variants (SNVs), small insertions and deletions (indels), copy-number variations (CNVs), loss of heterozygosity (LOH) and complex rearrangements, such as in chromothripsis. Workflows have been extensively validated and cross-compared using multiple methodologies. We also give step-by-step guidance on the execution of individual analysis types, provide advice on data interpretation and make the complete code available online. The protocol takes 2-7 d, depending on the desired analyses.


Subject(s)
Genomics/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , Animals , INDEL Mutation , Loss of Heterozygosity , Mice , Polymorphism, Single Nucleotide , Workflow
7.
Nature ; 554(7690): 62-68, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29364867

ABSTRACT

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfß-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Evolution, Molecular , Gene Dosage , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Adaptor Proteins, Signal Transducing/genetics , Alleles , Animals , Carcinogenesis/genetics , Cell Cycle Proteins , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Progression , Female , Genes, myc , Genes, p53 , Humans , Male , Mice , Mutation , NF-kappa B p52 Subunit/genetics , Neoplasm Metastasis/genetics , Nuclear Proteins/genetics , Phenotype , Phosphoproteins/genetics , Transcription Factors/genetics , Transcriptome/genetics , Transforming Growth Factor beta1/genetics , YAP-Signaling Proteins
9.
Nature ; 552(7683): 121-125, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29143824

ABSTRACT

T cell non-Hodgkin lymphomas are a heterogeneous group of highly aggressive malignancies with poor clinical outcomes. T cell lymphomas originate from peripheral T cells and are frequently characterized by genetic gain-of-function variants in T cell receptor (TCR) signalling molecules. Although these oncogenic alterations are thought to drive TCR pathways to induce chronic proliferation and cell survival programmes, it remains unclear whether T cells contain tumour suppressors that can counteract these events. Here we show that the acute enforcement of oncogenic TCR signalling in lymphocytes in a mouse model of human T cell lymphoma drives the strong expansion of these cells in vivo. However, this response is short-lived and robustly counteracted by cell-intrinsic mechanisms. A subsequent genome-wide in vivo screen using T cell-specific transposon mutagenesis identified PDCD1, which encodes the inhibitory receptor programmed death-1 (PD-1), as a master gene that suppresses oncogenic T cell signalling. Mono- and bi-allelic deletions of PDCD1 are also recurrently observed in human T cell lymphomas with frequencies that can exceed 30%, indicating high clinical relevance. Mechanistically, the activity of PD-1 enhances levels of the tumour suppressor PTEN and attenuates signalling by the kinases AKT and PKC in pre-malignant cells. By contrast, a homo- or heterozygous deletion of PD-1 allows unrestricted T cell growth after an oncogenic insult and leads to the rapid development of highly aggressive lymphomas in vivo that are readily transplantable to recipients. Thus, the inhibitory PD-1 receptor is a potent haploinsufficient tumour suppressor in T cell lymphomas that is frequently altered in human disease. These findings extend the known physiological functions of PD-1 beyond the prevention of immunopathology after antigen-induced T cell activation, and have implications for T cell lymphoma therapies and for current strategies that target PD-1 in the broader context of immuno-oncology.


Subject(s)
Carcinogenesis/genetics , Genes, Tumor Suppressor , Haploinsufficiency/genetics , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/pathology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Animals , Cells, Cultured , Female , Humans , Lymphoma, T-Cell/metabolism , Male , Mice , Mutation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Signal Transduction/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
10.
Nat Commun ; 7: 10770, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26916719

ABSTRACT

Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research.


Subject(s)
Carcinogenesis/genetics , Pancreas/metabolism , Pancreatic Neoplasms/genetics , Animals , BRCA2 Protein/genetics , CRISPR-Cas Systems , Chromosome Deletion , Electroporation , Genetic Engineering/methods , Genome , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Magnetic Resonance Imaging , Mice , Mutation , Neoplasms, Experimental/genetics , Phylogeny , Polymerase Chain Reaction , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Analysis, DNA , Transfection/methods , Translocation, Genetic/genetics
11.
Proc Natl Acad Sci U S A ; 112(45): 13982-7, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26508638

ABSTRACT

Here, we show CRISPR/Cas9-based targeted somatic multiplex-mutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes.


Subject(s)
CRISPR-Cas Systems/genetics , Carcinoma, Hepatocellular/genetics , Disease Models, Animal , Genomics/methods , High-Throughput Screening Assays , Liver Neoplasms/genetics , Mutagenesis/genetics , Animals , Base Sequence , Gene Targeting , Histological Techniques , Liver/metabolism , Mice , Molecular Sequence Data , Selection, Genetic/genetics
12.
Nat Genet ; 47(1): 47-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25485836

ABSTRACT

Here we describe a conditional piggyBac transposition system in mice and report the discovery of large sets of new cancer genes through a pancreatic insertional mutagenesis screen. We identify Foxp1 as an oncogenic transcription factor that drives pancreatic cancer invasion and spread in a mouse model and correlates with lymph node metastasis in human patients with pancreatic cancer. The propensity of piggyBac for open chromatin also enabled genome-wide screening for cancer-relevant noncoding DNA, which pinpointed a Cdkn2a cis-regulatory region. Histologically, we observed different tumor subentities and discovered associated genetic events, including Fign insertions in hepatoid pancreatic cancer. Our studies demonstrate the power of genetic screening to discover cancer drivers that are difficult to identify by other approaches to cancer genome analysis, such as downstream targets of commonly mutated human cancer genes. These piggyBac resources are universally applicable in any tissue context and provide unique experimental access to the genetic complexity of cancer.


Subject(s)
Cell Transformation, Neoplastic/genetics , DNA Transposable Elements/genetics , Gene Regulatory Networks , Mutagenesis, Insertional , Pancreatic Neoplasms/genetics , Amino Acid Sequence , Animals , Forkhead Transcription Factors/analysis , Forkhead Transcription Factors/antagonists & inhibitors , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation , Gene Knock-In Techniques , Genes, Synthetic , Genes, p16 , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Moths/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Pancreatic Neoplasms/chemistry , Pancreatic Neoplasms/pathology , Proton-Translocating ATPases/genetics , RNA, Small Interfering/pharmacology , Repressor Proteins/analysis , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Transgenes , Transposases/genetics , Transposases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...