Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nat Commun ; 15(1): 2349, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514609

ABSTRACT

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.


Subject(s)
COVID-19 , Melphalan , SARS-CoV-2 , gamma-Globulins , Cricetinae , Animals , Humans , Mice , Mesocricetus , COVID-19 Vaccines , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Immunization , Glycoproteins , Antibodies, Neutralizing , Antibodies, Viral
2.
Nat Commun ; 15(1): 1051, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316751

ABSTRACT

Here we report the characterization of 17T2, a SARS-CoV-2 pan-neutralizing human monoclonal antibody isolated from a COVID-19 convalescent individual infected during the first pandemic wave. 17T2 is a class 1 VH1-58/κ3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA+ memory B cell, with a broad neutralizing activity against former and new SARS-CoV-2 variants, including XBB.1.16 and BA.2.86 Omicron subvariants. Consistently, 17T2 demonstrates in vivo prophylactic and therapeutic activity against Omicron BA.1.1 infection in K18-hACE2 mice. Cryo-electron microscopy reconstruction shows that 17T2 binds the BA.1 spike with the RBD in "up" position and blocks the receptor binding motif, as other structurally similar antibodies do, including S2E12. Yet, unlike S2E12, 17T2 retains its neutralizing activity against all variants tested, probably due to a larger RBD contact area. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 as a potential candidate for future clinical interventions.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Cryoelectron Microscopy , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
3.
Front Immunol ; 14: 1291972, 2023.
Article in English | MEDLINE | ID: mdl-38124756

ABSTRACT

Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , Mesocricetus , COVID-19/prevention & control , COVID-19 Vaccines
4.
iScience ; 26(7): 107224, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37502366

ABSTRACT

SARS-CoV-2 emerged in December 2019 and quickly spread worldwide, continuously striking with an unpredictable evolution. Despite the success in vaccine production and mass vaccination programs, the situation is not still completely controlled, and therefore accessible second-generation vaccines are required to mitigate the pandemic. We previously developed an adjuvanted vaccine candidate coded PHH-1V, based on a heterodimer fusion protein comprising the RBD domain of two SARS-CoV-2 variants. Here, we report data on the efficacy, safety, and immunogenicity of PHH-1V in cynomolgus macaques. PHH-1V prime-boost vaccination induces high levels of RBD-specific IgG binding and neutralizing antibodies against several SARS-CoV-2 variants, as well as a balanced Th1/Th2 cellular immune response. Remarkably, PHH-1V vaccination prevents SARS-CoV-2 replication in the lower respiratory tract and significantly reduces viral load in the upper respiratory tract after an experimental infection. These results highlight the potential use of the PHH-1V vaccine in humans, currently undergoing Phase III clinical trials.

5.
Vaccine ; 41(35): 5072-5078, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37460353

ABSTRACT

The continuing high global incidence of COVID-19 and the undervaccinated status of billions of persons strongly motivate the development of a new generation of efficacious vaccines. We have developed an adjuvanted vaccine candidate, PHH-1V, based on a protein comprising the receptor binding domain (RBD) of the Beta variant of SARS-CoV-2 fused in tandem with the equivalent domain of the Alpha variant, with its immunogenicity, safety and efficacy previously demonstrated in mouse models. In the present study, we immunized pigs with different doses of PHH-1V in a prime-and-boost scheme showing PHH-1V to exhibit an excellent safety profile in pigs and to produce a solid RBD-specific humoral response with neutralising antibodies to 7 distinct SARS-CoV-2 variants of concern, with the induction of a significant IFNγ+ T-cell response. We conclude that PHH-1V is safe and elicits a robust immune response to SARS-CoV-2 in pigs, a large animal preclinical model.


Subject(s)
COVID-19 , Mice , Animals , Swine , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines/adverse effects , Antibodies, Viral , Antibodies, Neutralizing , Immunogenicity, Vaccine , Spike Glycoprotein, Coronavirus/genetics
6.
NPJ Vaccines ; 8(1): 51, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024469

ABSTRACT

Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.

7.
iScience ; 26(4): 106457, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36999095

ABSTRACT

The elicitation of cross-variant neutralizing antibodies against SARS-CoV-2 represents a major goal for current COVID-19 vaccine strategies. Additionally, natural infection may also contribute to broaden neutralizing responses. To assess the contribution of vaccines and natural infection, we cross-sectionally analyzed plasma neutralization titers of six groups of individuals, organized according to the number of vaccines they received and their SARS-CoV-2 infection history. Two doses of vaccine had a limited capacity to generate cross-neutralizing antibodies against Omicron variants of concern (VOCs) in uninfected individuals, but efficiently synergized with previous natural immunization in convalescent individuals. In contrast, booster dose had a critical impact on broadening the cross-neutralizing response in uninfected individuals, to level similar to hybrid immunity, while still improving cross-neutralizing responses in convalescent individuals. Omicron breakthrough infection improved cross-neutralization of Omicron subvariants in non-previously infected vaccinated individuals. Therefore, ancestral Spike-based immunization, via infection or vaccination, contributes to broaden SARS-CoV-2 humoral immunity.

8.
Proc Natl Acad Sci U S A ; 120(10): e2214561120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36853940

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent ß-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Oligosaccharides/pharmacology , Lectins
9.
iScience ; 26(3): 106126, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36748086

ABSTRACT

Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.1.351 and B.1.1.7 SARS-CoV-2 variants formulated in SQBA adjuvant, an oil-in-water emulsion. A prime-boost immunisation with PHH-1V in BALB/c and K18-hACE2 mice induced a CD4+ and CD8+ T cell response and RBD-binding antibodies with neutralizing activity against several variants, and also showed a good tolerability profile. Significantly, RBD fusion heterodimer vaccination conferred 100% efficacy, preventing mortality in SARS-CoV-2 infected K18-hACE2 mice, but also reducing Beta, Delta and Omicron infection in lower respiratory airways. These findings demonstrate the feasibility of this recombinant vaccine strategy.

10.
Mol Oncol ; 17(4): 686-694, 2023 04.
Article in English | MEDLINE | ID: mdl-36495129

ABSTRACT

Patients with solid tumors have been a risk group since the beginning of the SARS-CoV-2 pandemic due to more significant complications, hospitalizations or deaths. The immunosuppressive state of cancer treatments or the tumor itself could influence the development of post-vaccination antibodies. This study prospectively analyzed 89 patients under chemotherapy and/or immunotherapy, who received two doses of the mRNA-1237 vaccine, and were compared with a group of 26 non-cancer individuals. Information on adverse events and neutralizing antibodies against the ancestral strain of SARS-CoV-2 (WH1) have been analyzed. Local reactions accounted for 65%, while systemic reactions accounted for 46% of oncologic individuals/cancer patients. Regarding the response to vaccination, 6.7% of cancer patients developed low neutralizing antibody levels. Lower levels of neutralizing antibodies between cancer and non-cancer groups were significant in individuals without previous SARS-CoV-2 infection, but not in previously infected individuals. We also observed that patients receiving chemotherapy or chemoimmunotherapy have significantly lower levels of neutralizing antibodies than non-cancer individuals. In conclusion, our study confirms the importance of prioritizing cancer patients receiving anticancer treatment in SARS-CoV-2 vaccination programs.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunotherapy , Neoplasms/drug therapy , RNA, Messenger
11.
iScience ; 25(11): 105455, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36320330

ABSTRACT

Mass vaccination campaigns reduced COVID-19 incidence and severity. Here, we evaluated the immune responses developed in SARS-CoV-2-uninfected patients with predominantly antibody-deficiencies (PAD) after three mRNA-1273 vaccine doses. PAD patients were classified based on their immunodeficiency: unclassified primary antibody-deficiency (unPAD, n = 9), common variable immunodeficiency (CVID, n = 12), combined immunodeficiency (CID, n = 1), and thymoma with immunodeficiency (TID, n = 1). unPAD patients and healthy controls (HCs, n = 10) developed similar vaccine-induced humoral responses after two doses. However, CVID patients showed reduced binding and neutralizing titers compared to HCs. Of interest, these PAD groups showed lower levels of Spike-specific IFN-γ-producing cells. CVID individuals also presented diminished CD8+T cells. CID and TID patients developed cellular but not humoral responses. Although the third vaccine dose boosted humoral responses in most PAD patients, it had limited effect on expanding cellular immunity. Vaccine-induced immune responses in PAD individuals are heterogeneous, and should be immunomonitored to define a personalized therapeutic strategies.

12.
Biomedicines ; 10(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36140273

ABSTRACT

In the absence of antiviral therapy, HIV-1 infection progresses to a wide spectrum of clinical manifestations that are the result of an entangled contribution of host, immune and viral factors. The contribution of these factors is not completely established. Several investigations have described the involvement of the immune system in the viral control. In addition, distinct HLA-B alleles, HLA-B27, -B57-58, were associated with infection control. The combination of these elements and antiviral host restriction factors results in different clinical outcomes. The role of the viral proteins in HIV-1 infection has been, however, less investigated. We will review contributions dedicated to the pathogenesis of HIV-1 infection focusing on studies identifying the function of the viral envelope glycoprotein (Env) in the clinical progression because of its essential role in the initial events of the virus life-cycle. Some analysis showed that inefficient viral Envs were dominant in non-progressor individuals. These poorly-functional viral proteins resulted in lower cellular activation, viral replication and minor viral loads. This limited viral antigenic production allows a better immune response and a lower immune exhaustion. Thus, the properties of HIV-1 Env are significant in the clinical outcome of the HIV-1 infection and AIDS pathogenesis.

13.
Transbound Emerg Dis ; 69(6): 3518-3529, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36167932

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic in humans, is able to infect several domestic, captive and wildlife animal species. Since reverse zoonotic transmission to pets has been demonstrated, it is crucial to determine their role in the epidemiology of the disease to prevent further spillover events and major spread of SARS-CoV-2. In the present study, we determined the presence of virus and the seroprevalence to SARS-CoV-2, as well as the levels of neutralizing antibodies (nAbs) against several variants of concern (VOCs) in pets (cats, dogs and ferrets) and stray cats from North-Eastern of Spain. We confirmed that cats and dogs can be infected by different VOCs of SARS-CoV-2 and, together with ferrets, are able to develop nAbs against the ancestral (B.1), Alpha (B.1.1.7), Beta (B.1.315), Delta (B.1.617.2) and Omicron (BA.1) variants, with lower titres against the latest in dogs and cats, but not in ferrets. Although the prevalence of active SARS-CoV-2 infection measured as direct viral RNA detection was low (0.3%), presence of nAbs in pets living in COVID-19-positive households was relatively high (close to 25% in cats, 10% in dogs and 40% in ferrets). It is essential to continue monitoring SARS-CoV-2 infections in these animals due to their frequent contact with human populations, and we cannot discard the probability of a higher animal susceptibility to new potential SARS-CoV-2 VOCs.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Cats , Dogs , Humans , Animals, Domestic , SARS-CoV-2/genetics , Cat Diseases/epidemiology , Ferrets , Seroepidemiologic Studies , Spain/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Antibodies, Neutralizing
14.
Sci Rep ; 12(1): 14772, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042275

ABSTRACT

Limited data exists on SARS-CoV-2 sustained-response to vaccine in patients with rheumatic diseases. This study aims to evaluate neutralizing antibodies (nAB) induced by SARS-CoV-2 vaccine after 3 to 6 months from administration in Systemic Lupus Erythematosus (SLE) patients, as a surrogate of sustained-immunological response. This cross-sectional study compared nAB titre of 39 SLE patients and 37 Healthy individuals with no previous SARS-CoV-2 infection, who had all received a complete regimen of a mRNA SARS-CoV-2 vaccine within the last 3 to 6 months. We included four lines of SLE treatment including Not-treated, Hydroxychloroquine, immunosuppressive drugs and biological therapy. Glucocorticoids were allowed in all groups. Healthy and Not-treated individuals showed the highest levels of nAB. Treated patients presented lower nAB titres compared to Healthy: a 73% decrease for First-Line patients, 56% for Second-Line treatment and 72% for Third-Line. A multivariate analysis pointed to Glucocorticoids as the most associated factor with declining nAB levels (75% decrease) in treated SLE. Furthermore, a significant reduction in nAB titres was observed for Rituximab-users compared to Healthy subjects (89% decrease). Medium-term response of SLE patients to SARS-CoV-2 mRNA vaccines is negatively impacted in Glucocorticoids and Rituximab users. These findings might help to inform recommendations in vaccination protocols for SLE patients.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Glucocorticoids/therapeutic use , Humans , Rituximab/therapeutic use , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
15.
Life Sci Alliance ; 5(12)2022 08 12.
Article in English | MEDLINE | ID: mdl-35961779

ABSTRACT

SARS-CoV-2 vaccination is the most effective strategy to protect individuals with haematologic malignancies against severe COVID-19, while eliciting limited vaccine responses. We characterized the humoral responses following 3 mo after mRNA-based vaccines in individuals at different plasma-cell disease stages: monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma on first-line therapy (MM), compared with a healthy population. Plasma samples from uninfected MM patients showed lower SARS-CoV-2-specific antibody levels and neutralization capacity compared with MGUS, SMM, and healthy individuals. Importantly, COVID-19 recovered MM individuals presented significantly higher plasma neutralization capacity compared with their uninfected counterparts, highlighting that hybrid immunity elicit stronger immunity even in this immunocompromised population. No differences in the vaccine-induced humoral responses were observed between uninfected MGUS, SMM and healthy individuals. In conclusion, MGUS and SMM patients could be SARS-CoV-2 vaccinated following the vaccine recommendations for the general population, whereas a tailored monitoring of the vaccine-induced immune responses should be considered in uninfected MM patients.


Subject(s)
COVID-19 , Monoclonal Gammopathy of Undetermined Significance , Paraproteinemias , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Monoclonal Gammopathy of Undetermined Significance/pathology , Monoclonal Gammopathy of Undetermined Significance/therapy , SARS-CoV-2 , Vaccination
16.
Age Ageing ; 51(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35595256

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccination is the most effective strategy to protect older residents of long-term care facilities (LTCF) against severe COVID-19, but primary vaccine responses are less effective in older adults. Here, we characterised the humoral responses of institutionalised seniors 3 months after they had received the mRNA/BNT162b2 vaccine. METHODS: plasma levels of SARS-CoV-2-specific total IgG, IgM and IgA antibodies were measured before and 3 months after vaccination in older residents of LTCF. Neutralisation capacity was assessed in a pseudovirus neutralisation assay against the original WH1 and later B.1.617.2/Delta variants. A group of younger adults was used as a reference group. RESULTS: three months after vaccination, uninfected older adults presented reduced SARS-CoV-2-specific IgG levels and a significantly lower neutralisation capacity against the WH1 and Delta variants compared with vaccinated uninfected younger individuals. In contrast, COVID-19-recovered older adults showed significantly higher SARS-CoV-2-specific IgG levels after vaccination than their younger counterparts, whereas showing similar neutralisation activity against the WH1 virus and an increased neutralisation capacity against the Delta variant. Although, similarly to younger individuals, previously infected older adults elicit potent cross-reactive immune responses, higher quantities of SARS-CoV-2-specific IgG antibodies are required to reach the same neutralisation levels. CONCLUSIONS: although hybrid immunity seems to be active in previously infected older adults 3 months after mRNA/BNT162b2 vaccination, humoral immune responses are diminished in COVID-19 uninfected but vaccinated older residents of LTCF. These results suggest that a vaccine booster dose should be prioritised for this particularly vulnerable population.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Long-Term Care , RNA, Messenger , Vaccination
17.
Front Immunol ; 13: 860215, 2022.
Article in English | MEDLINE | ID: mdl-35572570

ABSTRACT

Background: Evidence on the determinants of the magnitude of humoral responses and neutralizing titers in individuals with mild COVID-19 is scarce. Methods: In this cohort study of mild COVID-19 patients, we assessed viral load (VL) by RT-qPCR at two/three time points during acute infection, and anti-SARS-CoV-2 antibodies by ELISA and plasma neutralizing responses using a pseudovirus assay at day 60. Results: Seventy-one individuals (65% female, median 42 years old) were recruited and grouped into high viral load (VL) >7.5 Log10 copies/mL (n=20), low, VL ≤7.5 Log10 copies/mL (n=22), or as Non-early seroconverters with a positive PCR (n=20), and healthy individuals with a negative PCR (n=9). Individuals with high or low VL showed similar titers of total neutralizing antibodies at day 60, irrespective of maximal VL or viral dynamics. Non-early seroconverters had lower antibody titers on day 60, albeit similar neutralizing activity as the groups with high or low VL. Longer symptom duration and older age were independently associated with increased humoral responses. Conclusions: In mild SARS-CoV-2-infected individuals, the duration of symptoms and age (but not VL) contribute to higher humoral responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Cohort Studies , Female , Humans , Male
18.
Front Microbiol ; 13: 763039, 2022.
Article in English | MEDLINE | ID: mdl-35401460

ABSTRACT

The understanding of HIV-1 pathogenesis and clinical progression is incomplete due to the variable contribution of host, immune, and viral factors. The involvement of viral factors has been investigated in extreme clinical phenotypes from rapid progressors to long-term non-progressors (LTNPs). Among HIV-1 proteins, the envelope glycoprotein complex (Env) has been concentrated on in many studies for its important role in the immune response and in the first steps of viral replication. In this study, we analyzed the contribution of 41 Envs from 24 patients with different clinical progression rates and viral loads (VLs), LTNP-Elite Controllers (LTNP-ECs); Viremic LTNPs (vLTNPs), and non-controller individuals contemporary to LTNPs or recent, named Old and Modern progressors. We studied the Env expression, the fusion and cell-to-cell transfer capacities, as well as viral infectivity. The sequence and phylogenetic analysis of Envs were also performed. In every functional characteristic, the Envs from subjects with viral control (LTNP-ECs and vLTNPs) showed significant lower performance compared to those from the progressor individuals (Old and Modern). Regarding sequence analysis, the variable loops of the gp120 subunit of the Env (i.e., V2, V4, and mainly V5) of the progressor individuals showed longer and more glycosylated sequences than controller subjects. Therefore, HIV-1 Envs from virus of patients presenting viremic control and the non-progressor clinical phenotype showed poor viral functions and shorter sequences, whereas functional Envs were associated with virus of patients lacking virological control and with progressor clinical phenotypes. These correlations support the role of Env genotypic and phenotypic characteristics in the in vivo HIV-1 infection and pathogenesis.

19.
Cell Rep Med ; 3(2): 100523, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233547

ABSTRACT

To understand the determinants of long-term immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the concurrent impact of vaccination and emerging variants, we follow a prospective cohort of 332 patients with coronavirus disease 2019 (COVID-19) over more than a year after symptom onset. We evaluate plasma-neutralizing activity using HIV-based pseudoviruses expressing the spike of different SARS-CoV-2 variants and analyze them longitudinally using mixed-effects models. Long-term neutralizing activity is stable beyond 1 year after infection in mild/asymptomatic and hospitalized participants. However, longitudinal models suggest that hospitalized individuals generate both short- and long-lived memory B cells, while the responses of non-hospitalized individuals are dominated by long-lived B cells. In both groups, vaccination boosts responses to natural infection. Long-term (>300 days from infection) responses in unvaccinated participants show a reduced efficacy against beta, but not alpha nor delta, variants. Multivariate analysis identifies the severity of primary infection as an independent determinant of higher magnitude and lower relative cross-neutralization activity of long-term neutralizing responses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Adult , Aged , B-Lymphocytes/immunology , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Female , Follow-Up Studies , Humans , Immunologic Memory , Kinetics , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , Vaccination/methods , Young Adult
20.
Plant Cell Rep ; 41(4): 1013-1023, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35178612

ABSTRACT

KEY MESSAGE: Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.


Subject(s)
HIV-1 , Oryza , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , Lectins/chemistry , Lectins/metabolism , Membrane Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Syndactyly
SELECTION OF CITATIONS
SEARCH DETAIL