Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 115(3): 627-641, 2023 08.
Article in English | MEDLINE | ID: mdl-37077033

ABSTRACT

Plants need to integrate internal and environmental signals to mount adequate stress responses. The NUCLEAR PORE COMPLEX (NPC) component HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) is emerging as such an integrator, affecting responses to cold, heat, light, and salinity. Stress conditions often converge in a low-energy signal that activates SUCROSE NON-FERMENTING 1-RELATED KINASE 1 (SnRK1) to promote stress tolerance and survival. Here, we explored the role of HOS1 in the SnRK1-dependent response to low-energy stress in Arabidopsis thaliana, using darkness as a treatment and a combination of genetic, biochemical, and phenotypic assays. We show that the induction of starvation genes and plant tolerance to prolonged darkness are defective in the hos1 mutant. HOS1 interacts physically with the SnRK1α1 catalytic subunit in yeast two-hybrid assays and in planta, and the nuclear accumulation of SnRK1α1 is reduced in the hos1 mutant. Likewise, another NPC mutant, nup160, exhibits lower activation of starvation genes and decreased tolerance to prolonged darkness. Importantly, defects in low-energy responses in the hos1 background are rescued by fusing SnRK1α1 to a potent nuclear localization signal or by sugar supplementation during the dark treatment. Altogether, this work demonstrates the importance of HOS1 for the nuclear accumulation of SnRK1α1, which is key for plant tolerance to low-energy conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Protein Kinases/genetics , Nuclear Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
2.
Plant Physiol ; 187(3): 1357-1373, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34618060

ABSTRACT

SNF1-related Kinase 1 (SnRK1) is an evolutionarily conserved protein kinase with key functions in energy management during stress responses in plants. To address a potential role of SnRK1 under favorable conditions, we performed a metabolomic and transcriptomic characterization of rosettes of 20-d-old Arabidopsis (Arabidopsis thaliana) plants of SnRK1 gain- and loss-of-function mutants during the regular diel cycle. Our results show that SnRK1 manipulation alters the sucrose and trehalose 6-phosphate (Tre6P) relationship, influencing how the sucrose content is translated into Tre6P accumulation and modulating the flux of carbon to the tricarboxylic acid cycle downstream of Tre6P signaling. On the other hand, daily cycles of Tre6P accumulation were accompanied by changes in SnRK1 signaling, leading to a maximum in the expression of SnRK1-induced genes at the end of the night, when Tre6P levels are lowest, and to a minimum at the end of the day, when Tre6P levels peak. The expression of SnRK1-induced genes was strongly reduced by transient Tre6P accumulation in an inducible Tre6P synthase (otsA) line, further suggesting the involvement of Tre6P in the diel oscillations in SnRK1 signaling. Transcriptional profiling of wild-type plants and SnRK1 mutants also uncovered defects that are suggestive of an iron sufficiency response and of a matching induction of sulfur acquisition and assimilation when SnRK1 is depleted. In conclusion, under favorable growth conditions, SnRK1 plays a role in sucrose homeostasis and transcriptome remodeling in autotrophic tissues and its activity is influenced by diel fluctuations in Tre6P levels.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Homeostasis , Protein Serine-Threonine Kinases/genetics , Sucrose/metabolism , Transcriptome , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Circadian Rhythm , Protein Serine-Threonine Kinases/metabolism
3.
J Exp Bot ; 70(8): 2261-2274, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30793201

ABSTRACT

The evolutionarily conserved protein kinase complexes SnRK1 and TOR are central metabolic regulators essential for plant growth, development, and stress responses. They are activated by opposite signals, and the outcome of their activation is, in global terms, antagonistic. Similarly to their yeast and animal counterparts, SnRK1 is activated by the energy deficit often associated with stress to restore homeostasis, while TOR is activated in nutrient-rich conditions to promote growth. Recent evidence suggests that SnRK1 represses TOR in plants, revealing evolutionary conservation also in their crosstalk. Given their importance for integrating environmental information into growth and developmental programs, these signaling pathways hold great promise for reducing the growth penalties caused by stress. Here we review the literature connecting SnRK1 and TOR to plant stress responses. Although SnRK1 and TOR emerge mostly as positive regulators of defense and growth, respectively, the outcome of their activities in plant growth and performance is not always straightforward. Manipulation of both pathways under similar experimental setups, as well as further biochemical and genetic analyses of their molecular and functional interaction, is essential to fully understand the mechanisms through which these two metabolic pathways contribute to stress responses, growth, and development.


Subject(s)
Host Microbial Interactions/physiology , Plant Development/physiology , Protein Serine-Threonine Kinases , Stress, Physiological/physiology , TOR Serine-Threonine Kinases , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Homeostasis , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Plant Development/genetics , Plant Immunity , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
4.
Exp Suppl ; 107: 403-438, 2016.
Article in English | MEDLINE | ID: mdl-27812990

ABSTRACT

SnRK1 is an evolutionarily conserved protein kinase complex that regulates energy homeostasis in plants. In doing so, it promotes tolerance to adverse environmental conditions and influences a large array of growth and developmental processes. SnRK1 shares clear structural and functional similarities with its orthologs, yeast SNF1 and mammalian AMPK, but has evolved unique features that presumably provide a better adaptation to an autotrophic lifestyle. In this chapter, we review current knowledge on SnRK1, an atypical member of the SNF1/AMPK family, providing insight into its structure, regulation, and functions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Adaptation, Physiological/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Energy Metabolism/genetics , Homeostasis , Phosphorylation , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Signal Transduction , Sumoylation , Ubiquitination
5.
Plant J ; 85(1): 120-133, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26662259

ABSTRACT

The SnRK1 protein kinase balances cellular energy levels in accordance with extracellular conditions and is thereby key for plant stress tolerance. In addition, SnRK1 has been implicated in numerous growth and developmental processes from seed filling and maturation to flowering and senescence. Despite its importance, the mechanisms that regulate SnRK1 activity are poorly understood. Here, we demonstrate that the SnRK1 complex is SUMOylated on multiple subunits and identify SIZ1 as the E3 Small Ubiquitin-like Modifier (SUMO) ligase responsible for this modification. We further show that SnRK1 is ubiquitinated in a SIZ1-dependent manner, causing its degradation through the proteasome. In consequence, SnRK1 degradation is deficient in siz1-2 mutants, leading to its accumulation and hyperactivation of SnRK1 signaling. Finally, SnRK1 degradation is strictly dependent on its activity, as inactive SnRK1 variants are aberrantly stable but recover normal degradation when expressed as SUMO mimetics. Altogether, our data suggest that active SnRK1 triggers its own SUMOylation and degradation, establishing a negative feedback loop that attenuates SnRK1 signaling and prevents detrimental hyperactivation of stress responses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Ligases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Sumoylation , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Ligases/genetics , Mutation , Proteasome Endopeptidase Complex , Protein Serine-Threonine Kinases/genetics , Seeds/genetics , Seeds/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Front Plant Sci ; 5: 190, 2014.
Article in English | MEDLINE | ID: mdl-24904600

ABSTRACT

The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, ß and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.

7.
Plant Cell ; 25(10): 3871-84, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24179127

ABSTRACT

Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Phosphoprotein Phosphatases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Phosphoprotein Phosphatases/genetics , Phosphorylation , Plant Growth Regulators/metabolism , Protein Serine-Threonine Kinases/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...