Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-488895

ABSTRACT

Two mutations occurred in SARS-CoV-2 early during the COVID-19 pandemic that have come to define circulating virus lineages1: first a change in the spike protein (D614G) that defines the B.1 lineage and second, a double substitution in the nucleocapsid protein (R203K, G204R) that defines the B.1.1 lineage, which has subsequently given rise to three Variants of Concern: Alpha, Gamma and Omicron. While the latter mutations appear unremarkable at the protein level, there are dramatic implications at the nucleotide level: the GGG[->]AAC substitution generates a new Transcription Regulatory Sequence (TRS) motif, driving SARS-CoV-2 to express a novel subgenomic mRNA (sgmRNA) encoding a truncated C-terminal portion of nucleocapsid (N.iORF3), which is an inhibitor of type I interferon production. We find that N.iORF3 also emerged independently within the Iota variant, and further show that additional TRS motifs have convergently evolved to express novel sgmRNAs; notably upstream of Spike within the nsp16 coding region of ORF1b, which is expressed during human infection. Our findings demonstrate that SARS-CoV-2 is undergoing evolutionary changes at the functional RNA level in addition to the amino acid level, reminiscent of eukaryotic evolution. Greater attention to this aspect in the assessment of emerging strains of SARS-CoV-2 is warranted.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21259017

ABSTRACT

Mauritius, a small island in the Indian Ocean, has had a unique experience of the SARS-CoV-2 pandemic. In March 2020, Mauritius endured a small first wave and quickly implemented control measures which allowed elimination of local transmission of SARS-CoV-2. When borders to the island reopened, it was accompanied by mandatory quarantine and testing of incoming passengers to avoid reintroduction of the virus into the community. As variants of concern (VOCs) emerged elsewhere in the world, Mauritius began using genomic surveillance to keep track of quarantined cases of these variants. In March 2021, another local outbreak occurred, and sequencing was used to investigate this new wave of local infections. Here, we analyze 154 SARS-CoV-2 viral genomes from Mauritius, which represent 12% of all the infections seem in Mauritius, these were both from specimens of incoming passengers before March 2021 and those of cases during the second wave. Our findings indicate that despite the presence of known VOCs Beta (B.1.351) and Alpha (B.1.1.7) among quarantined passengers, the second wave of local SARS-CoV-2 infections in Mauritius was caused by a single introduction and dominant circulation of the B.1.1.318 virus. The B.1.1.318 variant is characterized by fourteen non-synonymous mutations in the S-gene, with five encoded amino acid substitutions (T95I, E484K, D614G, P681H, D796H) and one deletion (Y144del) in the Spike glycoprotein. This variant seems to be increasing in prevalence and it is now present in 34 countries. This study highlights that despite having stopped the introduction of more transmissible VOCs by travel quarantines, a single undetected introduction of a B.1.1.318 lineage virus was enough to initiate a large local outbreak in Mauritius and demonstrated the need for continuous genomic surveillance to fully inform public health decisions.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20142430

ABSTRACT

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 40,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated standard operating procedure (SOP) for high-throughput SARS-CoV-2 detection by RT-LAMP in 25 minutes that is robust, reliable, repeatable, sensitive, specific, and inexpensive.

SELECTION OF CITATIONS
SEARCH DETAIL
...