Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Virus Genes ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833150

ABSTRACT

White yam (Dioscorea rotundata) plants collected from farmers' fields and planted at the Areka Agricultural Research Center, Southern Ethiopia, displayed mosaic, mottling, and chlorosis symptoms. To determine the presence of viral pathogens, an investigation for virome characterization was conducted by Illumina high-throughput sequencing. The bioinformatics analysis allowed the assembly of five viral genomes, which according to the ICTV criteria were assigned to a novel potyvirus (3 genome sequences) and a novel crinivirus (2 genome sequences). The potyvirus showed ~ 66% nucleotide (nt) identity in the polyprotein sequence to yam mosaic virus (NC004752), clearly below the demarcation criteria of 76% identity. For the crinivirus, the RNA 1 and RNA 2 shared the highest sequence identity to lettuce chlorosis virus, and alignment of the aa sequence of the RdRp, CP and HSP70h (~ 49%, 45% and 76% identity), considered for the demarcation criteria, revealed the finding of a novel virus species. The names Ethiopian yam virus (EYV) and Yam virus 1 (YV-1) are proposed for the two tentative new virus species.

2.
Toxins (Basel) ; 16(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38535797

ABSTRACT

RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.


Subject(s)
Fungal Viruses , Fusarium , Mycotoxins , Trichothecenes , Animals
3.
Plant Dis ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38379223

ABSTRACT

Strawberry (Fragaria × ananassa Duch.) was introduced in Sicily (Italy) in the 1930s in the small town of Maletto, on the slopes of Etna volcan, where it's currently cultivated in a total area of 30 ha. The French cv. 'Madame Moutot', appreciated for its unique flavor and intense fragrance, was there propagated vegetatively and after decades, the distinctive 'Etna ecotype' originated by adaptation to the peculiar environmental conditions of the area (Milella et al., 2006). In May 2023, in a 0.5 ha "Etna ecotype" strawberry field, virus-like symptoms were observed in approximately 50% of the plants. Symptoms included severe dwarfing, leaf cupping and chlorotic spotting which lead to decline of infected plants. To investigate the etiology of the disease, leaf samples were collected from eight symptomatic plants for analysis by High-Throughput Sequencing (HTS). To this aim, total RNAs were extracted by using the RNeasy PowerPlant Kit (Qiagen, Germany). The RNAs were pooled, depleted of ribosomal RNA (QIAseq FastSelect; Qiagen), and a library was prepared according to the Illumina DNA Prep Kit. Sequencing on a NextSeq2000 instrument at Leibniz Institute DSMZ (Braunschweig, Germany) generated 31,149,784 of paired-end reads (150 nt), which were further analyzed in Geneious Prime version 2023.2 (Biomatters) using a custom workflow for virus discovery and genome assembly. Analysis of the assembled contigs by local BLASTn and BLASTp alignments against a custom plant virus database of NCBI nuclear-core (NC) reference sequences assigned a number of contigs to accession NC_025435, strawberry polerovirus 1 (SPV-1). Reconstruction of the virus genome by assembly of contigs and reads alignment resulted in a nearly complete genome sequence of SPV-1 (GenBank Acc. No. OR989958) showing by BLASTn 98.69% identity to the SPV-1 NC reference sequence, and 98.99 % identity with an isolate from the Czech Republic (GenBank Acc. OL421571). To confirm the presence of SPV-1 in each sample, RT-PCR using specific primers designed in this study SPV-1-CP-1F (5'-TCGAGATACGTCTAGAACTGCAA-3') and SPV-1-CP-1R (5'-GAGAGGCCCCTTCTACCTATTTG-3') targeting the entire 623 bp coat protein (CP) gene was performed. Amplicons of the expected size were obtained in five samples and Sanger-sequenced. The resulting sequences shared 99.85% - 100% of identity to the HTS - derived sequence (GenBank Acc. No. OR989958) through BLASTn analysis. Strawberry mottle virus (SMoV), strawberry mild yellow edge virus (SMYEV) and strawberry crinkle virus (SCV) were detected in the same library in addition to SPV-1 and then confirmed by RT-PCR using specific primers (Martin & Tzanetakis 2013). Strawberry polerovirus 1, related to the genus Polerovirus in the family Solemoviridae, was first reported in strawberries in Canada (Xiang et al. 2015) and was thereafter detected in the United States (Thekke-Veetil & Tzanetakis 2016), Argentina (Luciani et al. 2016), and Nepal (Kuwak et al. 2022). To date, the virus has been reported in Europe only in the Czech Republic (Franova et al. 2021). To our knowledge, this is the first report of SPV-1 in strawberry plants in Italy. Although the correlation between SPV-1 and strawberry decline (SD) is still uncertain (Xiang et al. 2015) transmission of the virus via aphids has recently been demonstrated (Franova et al. 2021). Our report let to hypothesize that its dissemination in Europe can be considered as increasing.

4.
Plant Dis ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990525

ABSTRACT

This study investigated the genetic diversity of citrus tristeza virus (CTV) isolates from Montenegro and Croatia, European countries with the northernmost citrus growing regions situated on the Eastern Adriatic coast. Fifteen complete or nearly complete CTV genomes were reconstructed from high-throughput sequencing of samples collected in distinct municipalities in Montenegro and Opuzen municipality in Croatia. Phylogenetic analyses assigned some of the sequences to VT and T30 strains, previously recorded in Europe, while remarkably other isolates were placed in S1 and RB groups, which have not been reported in Europe so far. In addition, a new phylogenetic lineage including only isolates from Montenegro was delineated and tentatively proposed as the MNE cluster. Recombination analysis revealed evidence of 11 recombination events in the sequences obtained in this study, between isolates of related strains, within isolates of the same strain, and between distant strains. These findings show that CTV diversity in Europe is higher than reported before and calls for the re-evaluation of management strategies.

5.
J Virol ; 97(11): e0130023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37888981

ABSTRACT

IMPORTANCE: We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using synthetic communities of varying complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 genera of plant viruses. The results obtained confirm that the dsRNA-based approach provides a more complete representation of the RNA virome, in particular, for high complexity ones. However, for viromes of low to medium complexity, VANA appears a reasonable alternative and would be the preferred choice if analysis of DNA viruses is of importance. Several parameters impacting performance were identified as well as a direct relationship between the completeness of virome description and sample sequencing depth. The strategy, results, and tools used here should prove useful in a range of virome analysis efforts.


Subject(s)
Metagenomics , Synthetic Biology , Virome , Viruses , DNA Viruses/classification , DNA Viruses/genetics , Metagenomics/methods , Metagenomics/standards , Virion/genetics , Virome/genetics , Synthetic Biology/methods , RNA, Double-Stranded/genetics , Viruses/classification , Viruses/genetics , Plant Viruses/classification , Plant Viruses/genetics
6.
Arch Microbiol ; 205(4): 129, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36947239

ABSTRACT

Since the first report in 2009, at least ten additional viruses have been identified and assigned to the proposed virus family Alternaviridae. Here we report two new mycoviruses tentatively assigned to this family, both identified as members of the fungal family Nectriaceae, which were isolated from surface-disinfected apple roots (Malus x domestica, Borkh.) affected by apple replant disease (ARD). ARD is a highly complex, worldwide-occurring disease resulting from plant reactions to a disturbed (micro)-biome and leads to high economic losses every year. The first alternavirus characterized in this study was identified in a Dactylonectria torresensis isolate. The virus was tentatively named dactylonectria torresensis alternavirus 1 (DtAV1) as the first member of the proposed new species Alternavirus dactylonectriae. The second virus was identified in an isolate of Ilyonectria robusta and was tentatively named ilyonectria robusta alternavirus 1 (IrAV1) as the first member of the proposed new species Alternavirus ilyonectriae. Full genomic sequences of the viruses were determined and are presented. Further, we found hints for putative components of a methyl transferase machinery using in silico approaches. This putative protein domain is encoded by segment 2. However, this result only establishes the basis for subsequent studies in which the function must be confirmed experimentally in vitro. Thus, this is the first study where a function is predicted to all three genomic segments within the group of the alternaviruses. These findings provide further insights into the virome of ARD-associated fungi and are therefore another brick in the wall of understanding the complexity of the disease.


Subject(s)
Hypocreales , Hypocreales/genetics , Genomics , Plants , Phylogeny
7.
Arch Virol ; 167(11): 2411-2415, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963918

ABSTRACT

The fungus Ilyonectria pseudodestructans belongs to the family Nectriaceae and was found to be part of the endophytic microbiome of apple trees (Malus x domestica, Borkh.) with apple replant disease (ARD). After dsRNA extraction, a mycoviral infection became evident. Here, we report the identification of a new virus, tentatively named "Ilyonectria pseudodestructans chrysovirus 1" (IpCV1), as the first member of the proposed new species "Alphachrysovirus ilyonectriae" within the genus Alphachrysovirus. This is the first report of a chrysovirus infecting a member of the fungal genus Ilyonectria. IpCV1 has a tripartite dsRNA genome with a total length of 8944 bp. The segments are 3439 bp, 2850 bp, and 2655 bp in length, and each dsRNA carries a single ORF. The encoded viral proteins are a 125.92-kDa RNA-dependent RNA polymerase, a 100.75-kDa coat protein, and one protein of unknown function with a predicted molecular mass of 93.04 kDa. The 5´ and 3´ UTRs are comparatively short and are 79 to 91 bp and 62 to 148 bp in length, respectively. This study provides the basis for further investigations of the impact of IpCV1 on its host and the etiology of ARD.


Subject(s)
Fungal Viruses , RNA Viruses , 3' Untranslated Regions , Fungal Viruses/genetics , Genome, Viral , Hypocreales , Open Reading Frames , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Viral Proteins/genetics
8.
Arch Virol ; 167(11): 2305-2310, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35941394

ABSTRACT

Zucchini yellow fleck virus (ZYFV), genus Potyvirus, is the causal agent of a disease of cucurbits. The genome sequences of seven ZYFV isolates of different origin were determined, two of which were reconstructed from a squash (Cucurbita sp.) collected in 2017 in Greece, while the others, accessions from the DSMZ Plant Virus Collection, were from samples collected in Italy, Greece, and France in the 1980s and 1990s. A high level of molecular diversity, well dispersed along the genome, was observed, but this was within the limits for assignment of the virus isolates to the same species. P1 was the most diverse gene, and isolates from squash contained an insertion in this gene.


Subject(s)
Cucurbita , Plant Viruses , Potyvirus , Genome, Viral , Plant Diseases , Plant Viruses/genetics , Zinc Phosphate Cement
9.
Arch Virol ; 167(10): 2093-2098, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35821148

ABSTRACT

Two new umbravirus-like associated RNAs (ulaRNAs) were found, respectively, in maize and Johnsongrass samples from Ecuador. The complete sequences consist of 3,053 and 3,025 nucleotides, respectively, and contain four open reading frames (ORFs). Their genome sequences were 58% identical to each other and 28 to 60% identical to the most closely related viruses. Phylogenetic analysis using full genome sequences and amino acid sequence of the RNA-dependent-RNA polymerase (RdRp) placed both sequences in a clade sharing the most recent common ancestor with ulaRNAs from sugarcane and maize, suggesting that they belong to a monophyletic grass-infecting lineage. Their terminal regions exhibit features common to umbraviruses and ulaRNAs.


Subject(s)
Sorghum , Tombusviridae , Ecuador , Genome, Viral , Open Reading Frames , Phylogeny , RNA , RNA, Viral/genetics , Tombusviridae/genetics , Zea mays
10.
Virus Genes ; 58(5): 423-435, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35841525

ABSTRACT

In this study, three new mycoviruses were identified co-infecting the apple replant disease (ARD)-associated root endophyte Rugonectria rugulosa. After dsRNA extraction, six viral fragments were visualized. Four fragments belong to a quadrivirus, which has a genome size of 17,166 bp. Each of the fragments of this quadrivirus has a single ORF encoding a protein. Two of these proteins are coat protein subunits, one ORF encodes the RdRp, and one protein has an unknown function. This virus was tentatively named rugonectria rugulosa quadrivirus 1 (RrQV1) as a member of the proposed new species Quadrivirus rugonectria. Another fragment represents the dsRNA intermediate form of a + ssRNA mitovirus with a genome size of 2410 nt. This virus encodes an RdRp and is tentatively called rugonectria rugulosa mitovirus 1 (RrMV1). RrMV1 is suggested as a member of a new species with the proposed name Mitovirus rugonectria. The sixth fragment belongs to the genome of an unclassified dsRNA virus tentatively called rugonectria rugulosa dsRNA virus 1 (RrV1). The monopartite dsRNA genome of RrV1 has a length of 8964 bp and contains two ORFs encoding a structure/gag protein and an RdRp. Full genomic sequences were determined and the genome structure as well as molecular properties are presented. After phylogenetic studies and sequence identity analyses, all three isolates are proposed as new mycoviruses. The results help to improve the understanding of the complexity of the factors involved in ARD and support the interest in mycoviral research. Subsequent analyses need to focus on the impact of mycoviruses on the biology and pathogenicity of ARD-associated fungi. The results of such studies could contribute to the development of mitigation strategies against the disease.


Subject(s)
Fungal Viruses , Hypocreales , Malus , RNA Viruses , Gene Products, gag/genetics , Genome, Viral/genetics , Hypocreales/genetics , Malus/genetics , Open Reading Frames/genetics , Phylogeny , Protein Subunits/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase
11.
Virus Genes ; 58(4): 294-307, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35538384

ABSTRACT

Yam (Dioscorea spp.) is an important crop for smallholder farmers in the Northeast region of Brazil. Wherever yam is grown, diseases caused by yam mosaic virus (YMV) are prevalent. In the present study, the diversity of YMV infecting Dioscorea cayennensis-rotundata was analyzed. In addition, five species of Dioscorea (D. alata, D. altissima, D. bulbifera, D. subhastata, and D. trifida) commonly found in Brazil were analyzed using ELISA and high-throughput sequencing (HTS). YMV was detected only in D. cayennensis-rotundata, of which 66.7% of the samples tested positive in ELISA. Three YMV genome sequences were assembled from HTS and one by Sanger sequencing to group the sequences in a clade phylogenetically distinct from YMV from other origins. Temporal phylogenetic analyses estimated the mean evolutionary rate for the CP gene of YMV as 1.76 × 10-3 substitutions per site per year, and the time to the most recent common ancestor as 168.68 years (95% Highest Posterior Density, HPD: 48.56-363.28 years), with a most likely geographic origin in the African continent. The data presented in this study contribute to reveal key aspects of the probable epidemiological history of YMV in Brazil.


Subject(s)
Dioscorea , Potyvirus , Brazil , Phylogeny , Plant Diseases , Potyvirus/genetics
12.
Plants (Basel) ; 10(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34961241

ABSTRACT

Most plant viruses rely on vector transmission for their spread and specific interactions between vector and virus have evolved to regulate this relationship. The whitefly Bemisia tabaci- transmitted cucumber vein yellowing virus (CVYV; genus Ipomovirus, family Potyviridae) is endemic in the Mediterranean Basin, where it causes significant losses in cucurbit crops. In this study, the role of the coat protein (CP) of CVYV for B. tabaci transmission and plant infection was investigated using a cloned and infectious CVYV cDNA and a collection of point and deletion mutants derived from this clone. Whitefly transmission of CVYV was abolished in a deletion mutant lacking amino acids in position 93-105 of the CP. This deletion mutant caused more severe disease symptoms compared to the cDNA clone representing the wild-type (wt) virus and movement efficiency was likewise affected. Two virus mutants carrying a partially restored CP were transmissible and showed symptoms comparable to the wt virus. Collectively, our data demonstrate that the N-terminus of the CVYV CP is a determinant for transmission by the whitefly vector and is involved in plant infection and symptom expression.

13.
Pathogens ; 10(5)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066889

ABSTRACT

Field surveys were conducted in Greek olive orchards from 2017 to 2020 to collect information on the sanitary status of the trees. Using a high-throughput sequencing approach, viral sequences were identified in total RNA extracts from several trees and assembled to reconstruct the complete genomes of two isolates of a new viral species of the genus Tepovirus (Betaflexiviridae), for which the name olive virus T (OlVT) is proposed. A reverse transcription-polymerase chain reaction assay was developed which detected OlVT in samples collected in olive growing regions in Central and Northern Greece, showing a virus prevalence of 4.4% in the olive trees screened. Sequences of amplified fragments from the movement-coat protein region of OlVT isolates varied from 75.64% to 99.35%. Three olive varieties (Koroneiki, Arbequina and Frantoio) were infected with OlVT via grafting to confirm a graft-transmissible agent, but virus infections remained latent. In addition, cucumber mosaic virus, olive leaf yellowing-associated virus and cherry leaf roll virus were identified.

14.
Cells ; 10(5)2021 05 17.
Article in English | MEDLINE | ID: mdl-34067728

ABSTRACT

Cassava brown streak disease (CBSD) is a destructive disease of cassava in Eastern and Central Africa. Because there was no source of resistance in African varieties to provide complete protection against the viruses causing the disease, we searched in South American germplasm and identified cassava lines that did not become infected with the cassava brown streak viruses. These findings motivated further investigations into the mechanism of virus resistance. We used RNAscope® in situ hybridization to localize cassava brown streak virus in cassava germplasm lines that were highly resistant (DSC 167, immune) or that restricted virus infections to stems and roots only (DSC 260). We show that the resistance in those lines is not a restriction of long-distance movement but due to preventing virus unloading from the phloem into parenchyma cells for replication, thus restricting the virus to the phloem cells only. When DSC 167 and DSC 260 were compared for virus invasion, only a low CBSV signal was found in phloem tissue of DSC 167, indicating that there is no replication in this host, while the presence of intense hybridization signals in the phloem of DSC 260 provided evidence for virus replication in companion cells. In neither of the two lines studied was there evidence of virus replication outside the phloem tissues. Thus, we conclude that in resistant cassava lines, CBSV is confined to the phloem tissues only, in which virus replication can still take place or is arrested.


Subject(s)
Manihot/virology , Plant Roots/virology , Plant Shoots/virology , Potyviridae/pathogenicity , Tropism , Disease Resistance , Host-Pathogen Interactions , Manihot/genetics , Manihot/growth & development , Phloem/virology , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Potyviridae/growth & development , Virus Replication
15.
Microorganisms ; 9(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33920047

ABSTRACT

High-throughput sequencing (HTS) technologies have become indispensable tools assisting plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for plant virus detection and virome characterization. We start from sample preparation and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis requirements, an extensive overview of the in-depth data processing options, and taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview of the consecutive steps that can be used to implement a well-structured HTS data analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in HTS plant virome projects.

16.
Methods Mol Biol ; 2148: 203-215, 2020.
Article in English | MEDLINE | ID: mdl-32394384

ABSTRACT

RNAscope has been recently introduced by Advanced Cell Diagnostics (Newark, CA, USA) for in situ hybridization (ISH) of target RNAs using a proprietary technology for probe design and hybridization assay. The method has been extensively used as a basis for sensitive diagnostic assays in the medical field, while applications of this technique in plant sciences are still rare. Here, we describe a multiplex ISH protocol for detection of two plant viruses in formalin-fixed paraffin-embedded tissue sections from cassava. The dual-color protocol described can be used as reference for virus/host interaction studies including the visualization of virus nucleic acids and plant endogenous mRNAs. RNAscope provides a specificity and sensitivity of target detection that otherwise cannot be reached.


Subject(s)
In Situ Hybridization/methods , Plants/virology , RNA, Viral/isolation & purification , Viruses/isolation & purification , RNA, Viral/genetics , Viruses/genetics
17.
Viruses ; 12(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32224858

ABSTRACT

Tospoviruses cause significant losses to a wide range of agronomic and horticultural crops worldwide. The type member, Tomato spotted wilt tospovirus (TSWV), causes systemic infection in susceptible tomato cultivars, whereas its infection is localized in cultivars carrying the Sw-5 resistance gene. The response to TSWV infection in tomato cultivars with or without Sw-5 was determined at the virus small RNA level in the locally infected leaf. Predicted reads were aligned to TSWV reference sequences. The TSWV genome was found to be differentially processed among each of the three-viral genomic RNAs-Large (L), Medium (M) and Small (S)-in the Sw-5(+) compared to Sw-5(-) genotypes. In the Sw-5(+) cultivar, the L RNA had the highest number of viral small-interfering RNAs (vsiRNAs), whereas in the Sw-5(-) cultivar the number was higher in the S RNA. Among the three-viral genomic RNAs, the distribution of hotspots showed a higher number of reads per million reads of vsiRNAs of 21 and 22 nt class at the 5' and 3' ends of the L and the S RNAs, with less coverage in the M RNA. In the Sw-5(-) cultivar, the nature of the 5' nucleotide-end in the siRNAs varied significantly; reads with 5'-adenine-end were most abundant in the mock control, whereas cytosine and uracil were more abundant in the infected plants. No such differences were seen in case of the resistant genotype. Findings provided insights into the response of tomato cultivars to TSWV infection.


Subject(s)
Genome, Viral , Plant Diseases/virology , Solanum lycopersicum/virology , Tospovirus/genetics , 5' Untranslated Regions , Computational Biology , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing , Phenotype , RNA, Small Interfering/genetics
18.
Microbiol Res ; 220: 72-82, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30744821

ABSTRACT

The biological bases of recovery of two grapevine cultivars, Nebbiolo and Barbera, showing different susceptibility and recovery ability to "flavescence dorée" (FD) phytoplasma infection were investigated. The expression over one vegetative season, in FD-recovered and healthy grapevines, of 18 genes involved in defence, hydrogen peroxide and hormone production was verified at two time points. Difference (Δ) between the relative expressions of August and July were calculated for each target gene of both cultivars. The significance of differences among groups assessed by univariate and multivariate statistical methods, and sPLS-DA analyses of the Δ gene expression values, showed that control and recovered grapevines of both cultivars were clearly separated. The Barbera-specific deregulation of defence genes supports a stronger response of this variety, within a general frame of interactions among H2O2, jasmonate and ethylene metabolisms, common to both varieties. This may strengthen the hypothesis that FD-recovered Barbera grapevines modulate transcription of their genes to cope with potential damages associated to the alteration of their oxidative status. Nebbiolo variety would fit into this picture, although with a less intense response, in line with its lower degree of susceptibility and recovery incidence to FD, compared to Barbera. The results evidenced a scenario where plant response to phytoplasma infection is highly affected by climatic and edaphic conditions. Nevertheless, even after several years from the original FD infection, it was still possible to distinguish, at molecular level, control and recovered grapevines of both cultivars by analyzing their overall-season response, rather than that of a single time point.


Subject(s)
Gene Expression Regulation, Plant/genetics , Plant Diseases , Vitis/genetics , Vitis/metabolism , Animals , Cyclopentanes , DNA, Plant , Ethylenes/metabolism , Gene Expression Profiling , Hydrogen Peroxide/metabolism , Oxylipins , Phytoplasma/virology , Plant Diseases/virology , Stress, Psychological
19.
Virol J ; 15(1): 128, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30107851

ABSTRACT

BACKGROUND: Cassava brown streak disease (CBSD) has a viral aetiology and is caused by viruses belonging to the genus Ipomovirus (family Potyviridae), Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Molecular and serological methods are available for detection, discrimination and quantification of cassava brown streak viruses (CBSVs) in infected plants. However, precise determination of the viral RNA localization in infected host tissues is still not possible pending appropriate methods. RESULTS: We have developed an in situ hybridization (ISH) assay based on RNAscope® technology that allows the sensitive detection and localization of CBSV RNA in plant tissues. The method was initially developed in the experimental host Nicotiana rustica and was then further adapted to cassava. Highly sensitive and specific detection of CBSV RNA was achieved without background and hybridization signals in sections prepared from non-infected tissues. The tissue tropism of CBSV RNAs appeared different between N. rustica and cassava. CONCLUSIONS: This study provides a robust method for CBSV detection in the experimental host and in cassava. The protocol will be used to study CBSV tropism in various cassava genotypes, as well as CBSVs/cassava interactions in single and mixed infections.


Subject(s)
In Situ Hybridization , Manihot/virology , Plant Diseases/virology , Potyviridae/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Nicotiana/virology
20.
BMC Res Notes ; 11(1): 288, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29747679

ABSTRACT

OBJECTIVE: Impatiens necrotic spot orthotospovirus (INSV) can impact economically important ornamental plants and vegetables worldwide. Characterization studies on INSV are limited. For most INSV isolates, there are no complete genome sequences available. This lack of genomic information has a negative impact on the understanding of the INSV genetic diversity and evolution. Here we report the first complete nucleotide sequence of a US INSV isolate. RESULTS: INSV-UP01 was isolated from an impatiens in Pennsylvania, US. RT-PCR was used to clone its full-length genome and Vector NTI to assemble overlapping sequences. Phylogenetic trees were constructed by using MEGA7 software to show the phylogenetic relationships with other available INSV sequences worldwide. This US isolate has genome and biological features classical of INSV species and clusters in the Western Hemisphere clade, but its origin appears to be recent. Furthermore, INSV-UP01 might have been involved in a recombination event with an Italian isolate belonging to the Asian clade. Our analyses support that INSV isolates infect a broad plant-host range they group by geographic origin and not by host, and are subjected to frequent recombination events. These results justify the need to generate and analyze complete genome sequences of orthotospoviruses in general and INSV in particular.


Subject(s)
Genome, Viral , Phylogeny , Tospovirus/genetics , Tospovirus/isolation & purification , Base Sequence , Conserved Sequence/genetics , Genetic Vectors/metabolism , Host-Pathogen Interactions/genetics , Nucleotide Motifs/genetics , Plant Diseases/virology , Recombination, Genetic , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...