Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 443: 138504, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38309024

ABSTRACT

Pistacia vera shells, an abundant agricultural by-product, are a rich source of undiscovered bioactive compounds. This study employed a response surface methodology (RSM) approach to optimize the microwave-assisted extraction of antioxidants. The highest total phenolic content, and antioxidant activity were achieved under the optimized extraction conditions (20 % ethanol, 1000 W, 135 s, and solvent-to-solid ratio of 27 mL/g). The resulting extract (OPVS-E) included gallic acid derivatives, hydrolysable tannins, flavonoids, fatty acids, and anacardic acids. Remarkably, OPVS-E displayed potent inhibitory activity against α-amylase (IC50 = 2.05 µg/mL) and α-glucosidase (IC50 = 41.07 µg/mL), by far more powerful than the anti-diabetic drug acarbose, OPVS-E exhibited a strong antiradical capacity against reactive oxygen species (ROS) without causing toxicity in intestinal cells (HT29-MTX and Caco-2). These findings introduce OPVS-E as a potential novel dual-action nutraceutical ingredient, able to mitigate postprandial hyperglycemia and counteract the ROS overproduction occurring in type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Pistacia , Humans , Antioxidants/pharmacology , Plant Extracts/pharmacology , Hyperglycemia/drug therapy , Reactive Oxygen Species , Caco-2 Cells
2.
Food Res Int ; 175: 113807, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129012

ABSTRACT

The health benefits of chestnut (Castanea sativa) shells (CSs) have been ascribed to phytochemicals, mainly phenolic compounds. Nevertheless, an exhaustive assessment of their intestinal absorption is vital considering a possible nutraceutical application. This study evaluated the bioactivity of CSs extract prepared by Supercritical Fluid Extraction and untargeted metabolomic profile upon in-vitro intestinal permeation across a Caco-2/HT29-MTX co-culture model. The results demonstrated the neuroprotective, hypoglycemic, and hypolipidemic properties of CSs extract by inhibition of acetylcholinesterase, α-amylase, and lipase activities. The untargeted metabolic profiling by LC-ESI-LTQ-Orbitrap-MS unveiled almost 60 % of lipids and 30 % of phenolic compounds, with 29 metabolic pathways indicated by enrichment analysis. Among phenolics, mostly phenolic acids, flavonoids, and coumarins permeated the intestinal barrier with most metabolites arising from phase I reactions (reduction, hydrolysis, and hydrogenation) and a minor fraction from phase II reactions (methylation). The permeation rates enhanced in the following order: ellagic acid < o-coumaric acid < p-coumaric acid < ferulaldehyde ≤ hydroxyferulic acid ≤ dihydroferulic acid < ferulic acid < trans-caffeic acid < trans-cinnamic acid < dihydrocaffeic acid, with better outcomes for 1000 µg/mL of extract concentration and after 4 h of permeation. Taken together, these findings sustained a considerable in-vitro intestinal absorption of phenolic compounds from CSs extract, enabling them to reach target sites and exert their biological effects.


Subject(s)
Acetylcholinesterase , Intestinal Barrier Function , Humans , Caco-2 Cells , Intestinal Absorption , Intestines/chemistry , Phenols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...