Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 17(3): 454-465, 2017 May.
Article in English | MEDLINE | ID: mdl-27571734

ABSTRACT

We present the development of a genomic library using RADseq (restriction site associated DNA sequencing) protocol for marker discovery that can be applied on evolutionary studies of the sugarcane borer Diatraea saccharalis, an important South American insect pest. A RADtag protocol combined with Illumina paired-end sequencing allowed de novo discovery of 12 811 SNPs and a high-quality assembly of 122.8M paired-end reads from six individuals, representing 40 Gb of sequencing data. Approximately 1.7 Mb of the sugarcane borer genome distributed over 5289 minicontigs were obtained upon assembly of second reads from first reads RADtag loci where at least one SNP was discovered and genotyped. Minicontig lengths ranged from 200 to 611 bp and were used for functional annotation and microsatellite discovery. These markers will be used in future studies to understand gene flow and adaptation to host plants and control tactics.


Subject(s)
Genome, Insect , Lepidoptera/genetics , Sequence Analysis, DNA , Animals , DNA , Genetic Markers , Microsatellite Repeats , Polymorphism, Single Nucleotide , Saccharum
2.
Mol Breed ; 35(8): 175, 2015.
Article in English | MEDLINE | ID: mdl-26273212

ABSTRACT

Breeding trials typically consist of phenotypic observations for various traits evaluated in multiple environments. For sugarcane in particular, repeated measures are obtained for plant crop and one or more ratoons, such that joint analysis through mixed models for modeling heterogeneous genetic (co)variances between traits, locations and harvests is appropriate. This modeling approach also enables us to include molecular marker information, aiding in understanding the genetic architecture of quantitative traits. Our work aims at detecting QTL and QTL by environment interactions by fitting mixed models with multiple QTLs, with appropriate modeling of multi-trait multi-environment data for outcrossing species. We evaluated 100 individuals from a biparental cross at two locations and three  years for fiber content, sugar content (POL) and tonnes of cane per hectare (TCH). We detected 13 QTLs exhibiting QTL by location, QTL by harvest or the three-way interaction. Overall, 11 of the 13 effects presented some degree of pleiotropy, affecting at least two traits. Furthermore, these QTLs always affected fiber and TCH in the same direction, whereas POL was affected in the opposite way. There was no evidence in favor of the linked QTL over the pleiotropic QTL hypothesis for any detected genome position. These results provide valuable insights into the genetic basis of quantitative variation in sugarcane and the genetic relation between traits.

3.
Theor Appl Genet ; 124(8): 1389-402, 2012 May.
Article in English | MEDLINE | ID: mdl-22297563

ABSTRACT

Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.


Subject(s)
Droughts , Sorghum/genetics , Chromosome Mapping , Environment , Flowers , Genetic Linkage , Genetic Markers/genetics , Genome , Geography , Models, Statistical , Phenotype , Plant Physiological Phenomena , Quantitative Trait Loci , Sorghum/growth & development , Water/chemistry
4.
Theor Appl Genet ; 124(5): 835-49, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22159754

ABSTRACT

Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.


Subject(s)
Breeding/methods , Models, Genetic , Phenotype , Quantitative Trait Loci/genetics , Saccharum/growth & development , Saccharum/genetics , Brazil , Chromosome Mapping , Crosses, Genetic , Saccharum/chemistry , Sucrose/analysis , Time Factors
5.
Genet Mol Res ; 9(3): 1357-76, 2010 Jul 13.
Article in English | MEDLINE | ID: mdl-20645260

ABSTRACT

Some factors complicate comparisons between linkage maps from different studies. This problem can be resolved if measures of precision, such as confidence intervals and frequency distributions, are associated with markers. We examined the precision of distances and ordering of microsatellite markers in the consensus linkage maps of chromosomes 1, 3 and 4 from two F(2) reciprocal Brazilian chicken populations, using bootstrap sampling. Single and consensus maps were constructed. The consensus map was compared with the International Consensus Linkage Map and with the whole genome sequence. Some loci showed segregation distortion and missing data, but this did not affect the analyses negatively. Several inversions and position shifts were detected, based on 95% confidence intervals and frequency distributions of loci. Some discrepancies in distances between loci and in ordering were due to chance, whereas others could be attributed to other effects, including reciprocal crosses, sampling error of the founder animals from the two populations, F(2) population structure, number of and distance between microsatellite markers, number of informative meioses, loci segregation patterns, and sex. In the Brazilian consensus GGA1, locus LEI1038 was in a position closer to the true genome sequence than in the International Consensus Map, whereas for GGA3 and GGA4, no such differences were found. Extending these analyses to the remaining chromosomes should facilitate comparisons and the integration of several available genetic maps, allowing meta-analyses for map construction and quantitative trait loci (QTL) mapping. The precision of the estimates of QTL positions and their effects would be increased with such information.


Subject(s)
Chickens/genetics , Chromosome Mapping , Chromosomes/genetics , Genetic Linkage , Microsatellite Repeats/genetics , Animals , Brazil , Genetics, Population , Genome/genetics
6.
Heredity (Edinb) ; 103(6): 494-502, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19639011

ABSTRACT

When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.


Subject(s)
Chromosome Mapping/methods , Genetic Linkage , Algorithms , Computer Simulation , Genetic Markers , Models, Genetic , Plants/genetics , Software
7.
Hereditas ; 144(3): 78-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17663699

ABSTRACT

OneMap is an environment for constructing linkage maps of outcrossing plant species, using full-sib families derived from two outbred parents. The analyses are performed using a novel methodology based on the maximum likelihood approach for simultaneous estimation of linkage and linkage phases (Wu et al. 2002), which has been successfully applied to sugarcane (Garcia et al. 2006). It is implemented as a set of functions for the freely distributed software R, and handles pairwise marker analysis, marker ordering and map refinement. The software is freely available at http://www.ciagri.usp.br/ approximately aafgarci/OneMap/.


Subject(s)
Chromosome Mapping/methods , Crosses, Genetic , Software , Genetic Linkage , Genetic Markers , Genome, Plant , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...