Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(5): 1890-1895, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32022566

ABSTRACT

Hangman porphyrins influence the reaction rates of small molecule activation by positioning a functional group in the secondary coordination sphere of the metal center. Electrocatalysis by hangman porphyrins has examined only one face modification of the macrocycle with a hanging group, thus allowing for circumvention of secondary sphere effects by reaction of the small molecule on the opposite face of the hangman cleft. We now report the synthesis and characterization of a double hangman Fe porphyrin in which both faces of the macrocycle are modified with a hanging group. With this double hangman architecture, we are able to unequivocally examine the role of electrostatic interactions on the carbon dioxide reduction reaction (CO2RR) and show that CO2RR rates are significantly attenuated, consistent with the initial reduction of CO2 to generate the anion, whose binding is diminished within the negatively charged carboxylic groups of the hangman cleft. The results demonstrate the pronounced role that nonbonding electrostatic interactions may play in CO2RR and highlight the need to manage deleterious electrostatic interactions during catalytic turnover.

2.
Eur J Inorg Chem ; 2016(15-16): 2413-2423, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28713219

ABSTRACT

Six-coordinate MnIII complexes are typically high-spin (S = 2), however, the scorpionate ligand, both in its traditional, hydridotris(pyrazolyl)borate form, Tp- and Tp*- (the latter with 3,5-dimethylpyrazole substituents) and in an aryltris(carbene)borate (i.e., N-heterocyclic carbene, NHC) form, [Ph(MeIm)3B]-, (MeIm = 3-methylimidazole) lead to formation of bis(scorpionate) complexes of MnIII with spin triplet ground states; three of which were investigated herein: [Tp2Mn]SbF6 (1SBF6), [Tp*2Mn]SbF6 (2SBF6), and [{Ph(MeIm)3B}2Mn]CF3SO3 (3CF3SO3). These trigonally symmetric complexes were studied experimentally by magnetic circular dichroism (MCD) spectroscopy (the propensity of 3 to oxidize to MnIV precluded collection of useful MCD data) including variable temperatures and fields (VTVH-MCD) and computationally by ab initio CASSCF/NEVPT2 methods. These combined experimental and theoretical techniques establish the 3A2g electronic ground state for the three complexes, and provide information on the energy of the "conventional" high-spin excited state (5Eg) and other, triplet excited states. These results show the electronic effect of pyrazole ring substituents in comparing 1 and 2. The tunability of the scorpionate ligand, even by perhaps the simplest change (from pyrazole in 1 to 3,5-dimethylpyrazole in 2) is quantitatively manifested through perturbations in ligand-field excited-state energies that impact ground-state zero-field splittings. The comparison with the NHC donor is much more dramatic. In 3, the stronger σ-donor properties of the NHC lead to a quantitatively different electronic structure, so that the lowest lying spin triplet excited state, 3Eg, is much closer in energy to the ground state than in 1 or 2. The zero-field splitting (zfs) parameters of the three complexes were calculated and in the case of 1 and 2 compare closely to experiment (lower by < 10%, < 2 cm-1 in absolute terms); for 3 the large magnitude zfs is reproduced, although there is ambiguity about its sign. The comprehensive picture obtained for these bis(scorpionate) MnIII complexes provides quantitative insight into the role played by the scorpionate ligand in stabilizing unusual electronic structures.

3.
J Am Chem Soc ; 135(38): 14413-24, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24033186

ABSTRACT

The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene-amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni((Pr)bimiq1)](2+) (1c, where (Pr)bimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (E(cat) = -1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s(-1), respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.


Subject(s)
Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Coordination Complexes/chemistry , Isoquinolines/chemistry , Light , Nickel , Carbon Dioxide/radiation effects , Carbon Monoxide/radiation effects , Catalysis , Iridium , Oxidation-Reduction , Pyridines/chemistry , Solar Energy
4.
Acta Crystallogr C ; 69(Pt 9): 968-71, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24005501

ABSTRACT

The four-coordinate Co(II) complex, (azido-κN)[1,1,',1''-(phenylboranetriyl)tris(3-tert-butyl-1H-imidazol-2-ylidene)]cobalt(II), [Co(C27H38BN6)(N3)], (1), denoted PhB(t-BuIm)3CoN3, was prepared by the reaction of the corresponding chloride complex with NaN3. One-electron oxidation results in the isolation of the five-coordinate Co(III) complex, bis(azido-κN)[1,1,',1''-(phenylboranetriyl)tris(3-tert-butyl-1H-imidazol-2-ylidene)]cobalt(III), [Co(C27H38BN6)(N3)2], (2), denoted PhB(t-BuIm)3Co(N3)2. Attempts to prepare cobalt nitrides by thermolysis or photolysis of these complexes were unsuccessful.

5.
Inorg Chem ; 51(23): 12660-8, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23140462

ABSTRACT

The synthesis and characterization of new tris(carbene)borate ligand precursors containing substituted benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donor groups, as well as a new tris(imidazol-2-ylidene)borate ligand precursor are reported. The relative donor strengths of the tris(carbene)borate ligands have been evaluated by the position of ν(NO) in four-coordinate {NiNO}(10) complexes, and follow the order: imidazol-2-ylidene > benzimidazol-2-ylidene > 1,3,4-triazol-2-ylidene. There is a large variation in ν(NO), suggesting these ligands to have a wide range of donor strengths while maintaining a consistent ligand topology. All ligands are stronger donors than Tp* and Cp*.


Subject(s)
Boronic Acids/chemistry , Imidazoles/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Triazoles/chemistry , Boronic Acids/chemical synthesis , Crystallography, X-Ray , Imidazoles/chemical synthesis , Ligands , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis
6.
J Am Chem Soc ; 134(15): 6516-9, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22452612

ABSTRACT

The reaction of TEMPO with the iron(I) synthon PhB(MesIm)(3)Fe(COE) leads to formation of the κ(1)-TEMPO complex PhB(MesIm)(3)Fe(TEMPO). Structural and spectroscopic data establish the complex contains divalent iron bound to a nitroxido anion and is isoelectronic to an iron(II) peroxo complex. Thermolysis of the complex results in N-O bond homolysis, leading to the formation of an iron(III) oxo intermediate. The oxo intermediate is active in oxygen atom transfer reactions and can be trapped by the triphenylmethyl radical to give the iron(II) alkoxo complex PhB(MesIm)(3)Fe(OCPh(3)).


Subject(s)
Cyclic N-Oxides/chemistry , Iron/chemistry , Oxygen/chemistry
7.
Inorg Chem ; 50(19): 9508-17, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21902179

ABSTRACT

The mechanism of nitrogen atom transfer from four-coordinate tris(carbene)borate iron(IV) nitrido complexes to phosphines and phosphites has been investigated. In the absence of limiting steric effects, the rate of nitrogen atom transfer to phosphines increases with decreasing phosphine σ-basicity. This trend has been quantified by a Hammett study with para-substituted triarylphosphines, and is contrary to the expectations of an electrophilic nitrido ligand. On the basis of electronic structure calculations, a dual-nature transition state for nitrogen atom transfer is proposed, in which a key interaction involves the transfer of electron density from the nitrido highest occupied molecular orbital (HOMO) to the phosphine lowest unoccupied molecular orbital (LUMO). Compared to analogous atom transfer reactions from a 5d metal, these results show how the electronic plasticity of a 3d metal results in rapid atom transfer from pseudotetrahedral late metal complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...