Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Mol Immunol ; 170: 156-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692097

ABSTRACT

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Transcription Factors , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Neoplasm Recurrence, Local/immunology , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Cell Line, Tumor , Epithelial Cells/immunology , Epithelial Cells/metabolism , Animals , RNA, Double-Stranded/immunology , Transcription Factor RelA/metabolism , Mice , Gene Expression Regulation, Neoplastic , Signal Transduction/immunology , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology
2.
Oncogene ; 40(37): 5651-5664, 2021 09.
Article in English | MEDLINE | ID: mdl-34326467

ABSTRACT

Metastatic breast cancer causes most breast cancer-associated deaths, especially in triple negative breast cancers (TNBC). The metastatic drivers of TNBCs are still poorly understood, and effective treatment non-existent. Here we reveal that the presence of Aurora-A Kinase (AURKA) in the nucleus and metastatic dissemination are molecularly connected through HIF1 (Hypoxia-Inducible Factor-1) signaling. Nuclear AURKA activates transcription of "hypoxia-induced genes" under normoxic conditions (pseudohypoxia) and without upregulation of oxygen-sensitive HIF1A subunit. We uncover that AURKA preferentially binds to HIF1B and co-localizes with the HIF complex on DNA. The mass-spectrometry analysis of the AURKA complex further confirmed the presence of CBP and p300 along with other TFIIB/RNApol II components. Importantly, the expression of multiple HIF-dependent genes induced by nuclear AURKA (N-AURKA), including migration/invasion, survival/death, and stemness, promote early cancer dissemination. These results indicate that nuclear, but not cytoplasmic, AURKA is a novel driver of early metastasis. Analysis of clinical tumor specimens revealed a correlation between N-AURKA presence and decreased patient survival. Our results establish a mechanistic link between two critical pathways in cancer metastasis, identifying nuclear AURKA as a crucial upstream regulator of the HIF1 transcription complex and a target for anti-metastatic therapy.


Subject(s)
Aurora Kinase A , Cell Communication , Cell Nucleus , E1A-Associated p300 Protein , Humans , Hypoxia-Inducible Factor 1, alpha Subunit , Signal Transduction , Triple Negative Breast Neoplasms
3.
Oncotarget ; 11(50): 4613-4624, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33400735

ABSTRACT

Cancer cells have high demands for energy to maintain their exceedingly proliferative growth. However, the mechanism of energy expenditure in cancer is not well understood. We hypothesize that cancer cells might utilize energy-rich inorganic polyphosphate (polyP), as energetic reserve. PolyP is comprised of orthophosphates linked by phosphoanhydride bonds, as in ATP. Here, we show that polyP is highly abundant in several types of cancer cells, including brain tumor-initiating cells (BTICs), i.e., stem-like cells derived from a mouse brain tumor model that we have previously described. The polymer is avidly consumed during starvation of the BTICs. Depletion of ATP by inhibiting glycolysis and mitochondrial ATP-synthase (OXPHOS) further decreases the levels of polyP and alters morphology of the cells. Moreover, enzymatic hydrolysis of the polymer impairs the viability of cancer cells and significantly deprives ATP stores. These results suggest that polyP might be utilized as a source of phosphate energy in cancer. While the role of polyP as an energy source is established for bacteria, this finding is the first demonstration that polyP may play a similar role in the metabolism of cancer cells.

4.
Adv Exp Med Biol ; 1139: 105-114, 2019.
Article in English | MEDLINE | ID: mdl-31134497

ABSTRACT

Metastatic melanoma continues to present a significant challenge-with a cure rate of less than 10% and a median survival of 6-9 months. Despite noteworthy advances in the field, the heterogeneity of melanoma tumors, comprised of cell subpopulations expressing a cancer stem cell (CSC) phenotype concomitant with drug resistance markers presents a formidable challenge in the design of current therapies. Particularly vexing is the ability of distinct subpopulations of melanoma cells to resist standard-of-care treatments, resulting in relapse and progression to metastasis. Recent studies have provided new information and insights into the expression and function of CSC markers associated with the aggressive melanoma phenotype, such as the embryonic morphogen Nodal and CD133, together with a drug resistance marker ABCA1. This chapter highlights major findings that demonstrate the promise of targeting Nodal as a viable option to pursue in combination with standard-of-care therapy. In recognizing that aggressive melanoma tumors utilize multiple mechanisms to survive, we must consider a more strategic approach to effectively target heterogeneity, tumor cell plasticity, and functional adaptation and resistance to current therapies-to eliminate relapse, disease progression, and metastasis.


Subject(s)
Cell Plasticity , Melanoma/pathology , Neoplastic Stem Cells/cytology , Biomarkers, Tumor , Humans , Neoplasm Recurrence, Local
5.
Cancers (Basel) ; 11(3)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857267

ABSTRACT

Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence.

6.
Oncotarget ; 9(17): 13733-13747, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568390

ABSTRACT

CNS Primitive Neuroectodermal tumors (CNS-PNETs) are members of the embryonal family of malignant childhood brain tumors, which remain refractory to current therapeutic treatments. Current paradigm of brain tumorigenesis implicates brain tumor-initiating cells (BTIC) in the onset of tumorigenesis and tumor maintenance. However, despite their significance, there is currently no comprehensive characterization of CNS-PNETs BTICs. Recently, we described an animal model of CNS-PNET generated by orthotopic transplantation of human Radial Glial (RG) cells - the progenitor cells for adult neural stem cells (NSC) - into NOD-SCID mice brain and proposed that BTICs may play a role in the maintenance of these tumors. Here we report the characterization of BTIC lines derived from this CNS-PNET animal model. BTIC's orthotopic transplantation generated highly aggressive tumors also characterized as CNS-PNETs. The BTICs have the hallmarks of NSCs as they demonstrate self-renewing capacity and have the ability to differentiate into astrocytes and early migrating neurons. Moreover, the cells demonstrate aberrant accumulation of wild type tumor-suppressor protein p53, indicating its functional inactivation, highly up-regulated levels of onco-protein cMYC and the BTIC marker OCT3/4, along with metabolic switch to glycolysis - suggesting that these changes occurred in the early stages of tumorigenesis. Furthermore, based on RNA- and DNA-seq data, the BTICs did not acquire any transcriptome-changing genomic alterations indicating that the onset of tumorigenesis may be epigenetically driven. The study of these BTIC self-renewing cells in our model may enable uncovering the molecular alterations that are responsible for the onset and maintenance of the malignant PNET phenotype.

7.
Oncogene ; 37(11): 1457-1471, 2018 03.
Article in English | MEDLINE | ID: mdl-29321663

ABSTRACT

The primary cilium is a ubiquitous organelle presented on most human cells. It is a crucial signaling hub for multiple pathways including growth factor and G-protein coupled receptors. Loss of primary cilia, observed in various cancers, has been shown to affect cell proliferation. Primary cilia formation is drastically decreased in glioblastoma (GBM), however, the role of cilia in normal astrocyte or glioblastoma proliferation has not been explored. Here, we report that loss of primary cilia in human astrocytes stimulates growth rate in a lysophosphatidic acid (LPA)-dependent manner. We show that lysophosphatidic acid receptor 1 (LPAR1) is accumulated in primary cilia. LPAR1 signaling through Gα12/Gαq was previously reported to be responsible for cancer cell proliferation. We found that in ciliated cells, Gα12 and Gαq are excluded from the cilium, creating a barrier against unlimited proliferation, one of the hallmarks of cancer. Upon loss of primary cilia, LPAR1 redistributes to the plasma membrane with a concomitant increase in LPAR1 association with Gα12 and Gαq. Inhibition of LPA signaling with the small molecule compound Ki16425 in deciliated highly proliferative astrocytes or glioblastoma patient-derived cells/xenografts drastically suppresses their growth both in vitro and in vivo. Moreover, Ki16425 brain delivery via PEG-PLGA nanoparticles inhibited tumor progression in an intracranial glioblastoma PDX model. Overall, our findings establish a novel mechanism by which primary cilium restricts proliferation and indicate that loss of primary cilia is sufficient to increase mitogenic signaling, and is important for the maintenance of a highly proliferative phenotype. Clinical application of LPA inhibitors may prove beneficial to restrict glioblastoma growth and ensure local control of disease.


Subject(s)
Brain Neoplasms/pathology , Cell Proliferation/drug effects , Cilia/physiology , Glioblastoma/pathology , Lysophospholipids/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/ultrastructure , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cilia/drug effects , Cilia/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Lysophospholipids/antagonists & inhibitors , Lysophospholipids/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Transgenic , Molecular Targeted Therapy , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
8.
Curr Mol Biol Rep ; 3(3): 159-164, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29152453

ABSTRACT

PURPOSE OF REVIEW: Cancer is a major public health problem worldwide. In aggressive cancers, which are heterogeneous in nature, there exists a paucity of targetable molecules that can be used to predict outcome and response to therapy in patients, especially those in the high risk category with a propensity to relapse following chemotherapy. This review addresses the challenges pertinent to treating aggressive cancer cells with inherent stem cell properties, with a special focus on triple-negative breast cancer (TNBC). RECENT FINDINGS: Plasticity underlies the cancer stem cell (CSC) phenotype in aggressive cancers like TNBC. Progenitors and CSCs implement similar signaling pathways to sustain growth, and the convergence of embryonic and tumorigenic signaling pathways has led to the discovery of novel oncofetal targets, rigorously regulated during normal development, but aberrantly reactivated in aggressive forms of cancer. SUMMARY: Translational studies have shown that Nodal, an embryonic morphogen, is reactivated in aggressive cancers, but not in normal tissues, and underlies tumor growth, invasion, metastasis and drug resistance. Front-line therapies do not inhibit Nodal, but when a combinatorial approach is used with an agent such as doxorubicin followed by anti-Nodal antibody therapy, significant decreases in cell growth and viability occur. These findings are of special interest in the development of new therapeutic interventions that target the stem cell properties of cancer cells to overcome drug resistance and metastasis.

9.
PLoS One ; 12(3): e0173106, 2017.
Article in English | MEDLINE | ID: mdl-28249000

ABSTRACT

Recently, we described a new animal model of CNS primitive neuroectodermal tumors (CNS-PNET), which was generated by orthotopic transplantation of human Radial Glial (RG) cells into NOD-SCID mice's brain sub-ventricular zone. In the current study we conducted comprehensive RNA-Seq analyses to gain insights on the mechanisms underlying tumorigenesis in this mouse model of CNS-PNET. Here we show that the RNA-Seq profiles derived from these tumors cluster with those reported for patients' PNETs. Moreover, we found that (i) stabilization of HIF-1α and HIF-2α, which are involved in mediation of the hypoxic responses in the majority of cell types, (ii) up-regulation of MYCC, a key onco-protein whose dysregulation occurs in ~70% of human tumors, and (iii) accumulation of stabilized p53, which is commonly altered in human cancers, constitute hallmarks of our tumor model, and might represent the basis for CNS-PNET tumorigenesis in this model. We discuss the possibility that these three events might be interconnected. These results indicate that our model may prove invaluable to uncover the molecular events leading to MYCC and TP53 alterations, which would be of broader interest considering their relevance to many human malignancies. Lastly, this mouse model might prove useful for drug screening targeting MYCC and related members of its protein interaction network.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neuroectodermal Tumors, Primitive/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Brain Neoplasms/genetics , Cells, Cultured , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Neuroectodermal Tumors, Primitive/genetics , Proto-Oncogene Proteins c-myc/genetics , Tumor Suppressor Protein p53/genetics , Up-Regulation
10.
Lab Invest ; 97(2): 176-186, 2017 02.
Article in English | MEDLINE | ID: mdl-27775691

ABSTRACT

Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. It is the leading cause of skin cancer deaths with a median overall survival for advanced-stage metastatic disease of <6 months. Despite advances in the field with conventional and targeted therapies, the heterogeneity of melanoma poses the greatest ongoing challenge, ultimately leading to relapse and progression to a more drug-resistant tumor in most patients. Particularly noteworthy are recent findings, indicating that these therapies exert selective pressure on tumors resulting in the activation of pathways associated with cancer stem cells that are unresponsive to current therapy. Our previous studies have shown how Nodal, an embryonic morphogen of the transforming growth factor-beta superfamily, is one of these critical factors that is reactivated in aggressive melanoma and resistant to conventional chemotherapy, such as dacarbazine. In the current study, we sought to determine whether BRAF inhibitor (BRAFi) therapy targeted Nodal-expressing tumor cells in uniquely matched unresectable stage III and IV melanoma patient samples before and after therapy that preceded their eventual death due to disease. The results demonstrate that BRAFi treatment failed to affect Nodal levels in melanoma tissues. Accompanying experiments in soft agar and in nude mice showed the advantage of using combinatorial treatment with BRAFi plus anti-Nodal monoclonal antibody to suppress tumor growth and metastasis. These data provide a promising new approach using front-line therapy combined with targeting a cancer stem cell-associated molecule-producing a more efficacious response than monotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Nodal Protein/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Blotting, Western , Cell Line, Tumor , Female , Humans , Imidazoles/administration & dosage , Immunohistochemistry , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Melanoma/genetics , Melanoma/metabolism , Mice, Nude , Molecular Targeted Therapy/methods , Mutation , Nodal Protein/immunology , Nodal Protein/metabolism , Oximes/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays/methods
11.
Oncol Lett ; 12(2): 1349-1354, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27446436

ABSTRACT

The TGF-ß associated growth factor Nodal is highly expressed in aggressive metastatic melanoma. Determining the risk for melanomagenesis from Nodal expression in nevi prior to the development of melanoma may be useful for both the screening and prevention of melanoma. Tissue sections of human adult nevi with or without a history of melanoma were stained by immunohistochemistry (IHC) for Nodal, the Nodal co-receptor Cripto-1, and Notch4, which have previously been shown to be associated with Nodal expression in melanoma. The degree of Nodal, Cripto-1 and Notch4 staining was scored and correlated with available clinical data. Median IHC scores for Nodal, Cripto-1 and Notch4 expression were significantly higher in nevi removed from patients who eventually developed melanoma compared with nevi from patients with no history of melanoma. In addition, the degree of Nodal expression in nevi from patients who eventually developed melanoma correlated significantly with the Breslow depth of the melanoma. Expression of Nodal and components of its signaling pathway in nevi may represent a biomarker for selecting a unique subset of patients requiring increased surveillance for screening and prevention of melanoma.

12.
Cell Cycle ; 15(9): 1295-302, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27007464

ABSTRACT

Triple-negative breast cancer (TNBC) represents an aggressive cancer subtype characterized by the lack of expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The independence of TNBC from these growth promoting factors eliminates the efficacy of therapies which specifically target them, and limits TNBC patients to traditional systemic neo/adjuvant chemotherapy. To better understand the growth advantage of TNBC - in the absence of ER, PR and HER2, we focused on the embryonic morphogen Nodal (associated with the cancer stem cell phenotype), which is re-expressed in aggressive breast cancers. Most notably, our previous data demonstrated that inhibition of Nodal signaling in breast cancer cells reduces their tumorigenic capacity. Furthermore, inhibiting Nodal in other cancers has resulted in improved effects of chemotherapy, although the mechanisms for this remain unknown. Thus, we hypothesized that targeting Nodal in TNBC cells in combination with conventional chemotherapy may improve efficacy and represent a potential new strategy. Our preliminary data demonstrate that Nodal is highly expressed in TNBC when compared to invasive hormone receptor positive samples. Treatment of Nodal expressing TNBC cell lines with a neutralizing anti-Nodal antibody reduces the viability of cells that had previously survived treatment with the anthracycline doxorubicin. We show that inhibiting Nodal may alter response mechanisms employed by cancer cells undergoing DNA damage. These data suggest that development of therapies which target Nodal in TNBC may lead to additional treatment options in conjunction with chemotherapy regimens - by altering signaling pathways critical to cellular survival.


Subject(s)
Doxorubicin/pharmacology , Nodal Protein/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage , Female , Humans , Stress, Physiological/drug effects
13.
Int J Mol Sci ; 17(3): 418, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27011171

ABSTRACT

Expression of Nodal, a Transforming Growth Factor-beta (TGF-ß) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro-melanoma effects of Nodal via anti-oxidant effects of MDM.


Subject(s)
Melanocytes/metabolism , Melanoma/metabolism , Nodal Protein/metabolism , Signal Transduction , Acetylcysteine/pharmacology , Animals , Cell Line , Cell Line, Tumor , Child , Female , Humans , Melanins/pharmacology , Melanocytes/drug effects , Melanoma/congenital , Melanoma/pathology , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nodal Protein/genetics , Smad2 Protein/metabolism
14.
Oncotarget ; 6(33): 34071-86, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460952

ABSTRACT

Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers.


Subject(s)
Antibodies, Monoclonal/immunology , Breast Neoplasms/pathology , Melanoma/pathology , Nodal Protein/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Cell Line, Tumor , Cyclin B1/biosynthesis , Cyclin-Dependent Kinase Inhibitor p27/biosynthesis , Enzyme-Linked Immunosorbent Assay , Extracellular Signal-Regulated MAP Kinases/biosynthesis , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Imidazoles/pharmacology , Mice , Nodal Protein/blood , Nodal Protein/immunology , Oximes/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Smad2 Protein/biosynthesis , Surface Plasmon Resonance
15.
PLoS One ; 10(3): e0121707, 2015.
Article in English | MEDLINE | ID: mdl-25826270

ABSTRACT

There is growing evidence and a consensus in the field that most pediatric brain tumors originate from stem cells, of which radial glial cells constitute a subtype. Here we show that orthotopic transplantation of human radial glial (RG) cells to the subventricular zone of the 3rd ventricle--but not to other transplantation sites--of the brain in immunocompromised NOD-SCID mice, gives rise to tumors that have the hallmarks of CNS primitive neuroectodermal tumors (PNETs). The resulting mouse model strikingly recapitulates the phenotype of PNETs. Importantly, the observed tumorigenic transformation was accompanied by aspects of an epithelial to mesenchymal transition (EMT)-like process. It is also noteworthy that the tumors are highly invasive, and that they effectively recruit mouse endothelial cells for angiogenesis. These results are significant for several reasons. First, they show that malignant transformation of radial glial cells can occur in the absence of specific mutations or inherited genomic alterations. Second, they demonstrate that the same radial glial cells may either give rise to brain tumors or differentiate normally depending upon the microenvironment of the specific region of the brain to which the cells are transplanted. In addition to providing a prospect for drug screening and development of new therapeutic strategies, the resulting mouse model of PNETs offers an unprecedented opportunity to identify the cancer driving molecular alterations and the microenvironmental factors that are responsible for committing otherwise normal radial glial cells to a malignant phenotype.


Subject(s)
Cell Transplantation , Neuroectodermal Tumors, Primitive/pathology , Neuroglia/cytology , Tumor Microenvironment , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Mice, Inbred NOD , Mice, SCID
16.
Mol Cancer Res ; 13(4): 670-80, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25767211

ABSTRACT

UNLABELLED: Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently, FDA-approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain whether targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. IMPLICATIONS: Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Dacarbazine/pharmacology , Melanoma/drug therapy , Nodal Protein/metabolism , Skin Neoplasms/drug therapy , Apoptosis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanoma/metabolism , Molecular Targeted Therapy , Neoplasm Metastasis , Nodal Protein/immunology , Skin Neoplasms/metabolism
17.
PLoS One ; 9(7): e103230, 2014.
Article in English | MEDLINE | ID: mdl-25054204

ABSTRACT

The post-lactational regression of mammary gland is a complex multi-step process designed to conserve the biological function of the gland for next pregnancy. This developmental stage is a biological intrigue with great relevance to breast cancer research, and thus has been the subject of intensive scrutiny. Multipronged studies (microarray, proteomics profiling, animal knock-out models) have provided a repertoire of genes critical to involution. However, the caveat of these approaches remains in their failure to reveal post-translational modification(s), an emerging and critical aspect of gene regulation in developmental processes and mammary gland remodeling. The massive surge in the lysosomal enzymes concurrent with the onset of involution has been known for decades, and considered essential for "clearance" purposes. However, functional significance of these enzymes in diverse biological processes distinct from their proteolytic activity is just emerging. Studies from our laboratory had indicated specific post-translational modifications of the aspartyl endopeptidase Cathepsin D (CatD) at distinct stages mammary gland development. This study addresses the biological significance of these modifications in the involution process, and reveals that post-translational modifications drive CatD into the nucleus to cleave Histone 3. The cleavage of Histone 3 has been associated with cellular differentiation and could be critical instigator of involution process. From functional perspective, deregulated expression and increased secretion of CatD are associated with aggressive and metastatic phenotype of breast cancer. Thus unraveling CatD's physiological functions in mammary gland development will bridge the present gap in understanding its pro-tumorigenic/metastatic functions, and assist in the generation of tailored therapeutic approaches.


Subject(s)
Cathepsin D/metabolism , Histones/metabolism , Mammary Glands, Animal/physiology , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Cathepsin D/analysis , Female , Histones/analysis , Lactation , Mice, Inbred C57BL , Molecular Sequence Data , Pregnancy , Protein Processing, Post-Translational , Proteolysis
18.
Semin Cancer Biol ; 29: 40-50, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25073112

ABSTRACT

The Ras-ERK pathway is deregulated in approximately a third of human cancers, particularly those of epithelial origin. In aggressive, triple-negative, basal-like breast cancers, most tumors display increased MEK and ERK phosphorylation and exhibit a gene expression profile characteristic of Kras or EGFR mutant tumors; however, Ras family genetic mutations are uncommon in triple-negative breast cancer and EGFR mutations account for only a subset of these tumors. Therefore, the upstream events that activate MAPK signaling and promote tumor aggression in triple-negative breast cancers remain poorly defined. We have previously shown that a secreted TGF-ß family signaling ligand, Nodal, is expressed in breast cancer in correlation with disease progression. Here we highlight key findings demonstrating that Nodal is required in aggressive human breast cancer cells to activate ERK signaling and downstream tumorigenic phenotypes both in vitro and in vivo. Experimental knockdown of Nodal signaling downregulates ERK activity, resulting in loss of c-myc, upregulation of p27, G1 cell cycle arrest, increased apoptosis and decreased tumorigenicity. The data suggest that ERK activation by Nodal signaling regulates c-myc and p27 proteins post-translationally and that this cascade is essential for aggressive breast tumor behavior in vivo. As the MAPK pathway is an important target for treating triple-negative breast cancers, upstream Nodal signaling may represent a promising target for breast cancer diagnosis and combined therapies aimed at blocking ERK pathway activation.


Subject(s)
Cell Transformation, Neoplastic/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/genetics , Nodal Protein/metabolism , Triple Negative Breast Neoplasms/pathology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Apoptosis/genetics , Female , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Nodal Protein/genetics , Proliferating Cell Nuclear Antigen/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Triple Negative Breast Neoplasms/genetics
19.
Semin Oncol ; 41(2): 259-266, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24787297

ABSTRACT

As the frequency of melanoma increases, current treatment strategies are struggling to significantly impact patient survival. One of the critical issues in designing efficient therapies is understanding the composition of heterogeneous melanoma tumors in order to target cancer stem cells (CSCs) and drug-resistant subpopulations. In this review, we summarize recent findings pertinent to the reemergence of the embryonic Nodal signaling pathway in melanoma and its significance as a prognostic biomarker and therapeutic target. In addition, we offer a novel molecular approach to studying the functional relevance of Nodal-expressing subpopulations and their CSC phenotype.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Neoplastic Stem Cells/cytology , AC133 Antigen , Animals , Antigens, CD/metabolism , Biomarkers , Biomarkers, Tumor , Cell Differentiation , Cell Line, Tumor , Cell Separation , Cytological Techniques , Flow Cytometry , Genetic Techniques , Glycoproteins/metabolism , Humans , Immunohistochemistry , Mice , Neoplastic Stem Cells/metabolism , Nodal Protein/metabolism , Peptides/metabolism , Phenotype , Prognosis , Signal Transduction , Time Factors , Treatment Outcome
20.
Cell Cycle ; 12(9): 1450-6, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23574716

ABSTRACT

Cripto-1 (CR-1) protein function differs according to cellular or extracellular expression. In this study, we explore the significance of cell surface CR-1 expression in human melanoma cells. Cell surface CR-1-expressing human melanoma cells (CR1-CS+) were selected by fluorescence-activated cell sorting (FACS) and grown in vitro and in vivo in nude mice to study their growth characteristics. The CR1-CS+ melanoma cells were found to express increased levels of Oct4, MDR-1 and activated c-Src compared with cells lacking this subpopulation (CR1-CS-) or unsorted cells, used as control. CR1-CS+ show reduced proliferation rates and diminished spherical colony formation compared with control cells when cultured in vitro. Orthotopic injections of CR1-CS+ in nude mice formed slow growing tumors with histologic variability across different areas of the CR1-CS+ xenografts. CR-1-expressing cells from first generation CR1-CS+ tumors showed significantly increased tumor-forming rate and aggressiveness following subsequent transplants in nude mice. These data demonstrate that within a heterogeneous melanoma cell population there resides a slow proliferating, cell surface CR-1-expressing subpopulation capable of giving rise to a fast growing, aggressive progeny that may contribute to disease recurrence and progression.


Subject(s)
GPI-Linked Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Melanoma/metabolism , Melanoma/pathology , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation , Cell Separation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Mice , Mice, Nude , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...