Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 877791, 2022.
Article in English | MEDLINE | ID: mdl-35755684

ABSTRACT

Cereal-legume intercrops are developed mainly in low input or organic farming systems because of the overyielding and numerous ecosystem services they provide. For this management, little advice is available for varietal choice and there are almost no specific breeding programs. Our study aimed to evaluate the mixing ability of a panel of bread wheat genotypes in intercropping and to assess the impact of environment and legume tester choice on this ability. We used partial land equivalent ratios (LERs) to assess the mixing ability of a genotype defined as the combination of its ability to maintain its own yield in intercropping (producer effect, LERw) and to let the mixed species produce (associate effect, LERl). Eight wheat genotypes and 5 legume testers (3 pea and 2 faba bean varieties) were grown in sole crop and in all possible binary intercrops in nine contrasting environments. A mixed model was used to evaluate the effects of wheat genotypes, legume testers, environments, and all the interactions among these 3 factors on LERw and LERl. The chosen wheat genotypes presented contrasting mixing ability, either in terms of producer effect (LERw) or associate effect (LERl). A strong negative correlation was observed between these two components of genotype mixing ability, with an increase in producer effect being generally associated with similar decrease in associate effect, except for three genotypes. The impact of environment on the producer and associate effects was limited and similar between genotypes. Legume tester had a significant effect on both LERw and LERl, making the choice of tester a major issue to reveal the producer or associate effects of wheat genotype. Although the 5 testers showed no significant differences in wheat genotype order for both producer or associate effects, they showed different competitiveness and ability to discriminate genotypes: faba bean was very competitive, resulting in low LERt and low capacity to discriminate wheat genotypes for their mixing ability. On the contrary, pea was less competitive, resulting in higher LERt and better capacity to discriminate wheat genotypes. In particular, the Hr varieties (Geronimo and Spencer) discriminated best the wheat genotypes. Consequences on the implementation of breeding programs for wheat varieties adapted to intercropping are discussed.

2.
Sci Rep ; 10(1): 6790, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321933

ABSTRACT

Faba bean (Vicia faba L.) is a pulse crop of high nutritional value and high importance for sustainable agriculture and soil protection. With the objective of identifying gene-based SNPs, transcriptome sequencing was performed in order to reduce faba bean genome complexity. A set of 1,819 gene-based SNP markers polymorphic in three recombinant line populations was selected to enable the construction of a high-density consensus genetic map encompassing 1,728 markers well distributed in six linkage groups and spanning 1,547.71 cM with an average inter-marker distance of 0.89 cM. Orthology-based comparison of the faba bean consensus map with legume genome assemblies highlighted synteny patterns that partly reflected the phylogenetic relationships among species. Solid blocks of macrosynteny were observed between faba bean and the most closely-related sequenced legume species such as pea, barrel medic or chickpea. Numerous blocks could also be identified in more divergent species such as common bean or cowpea. The genetic tools developed in this work can be used in association mapping, genetic diversity, linkage disequilibrium or comparative genomics and provide a backbone for map-based cloning. This will make the identification of candidate genes of interest more efficient and will accelerate marker-assisted selection (MAS) and genomic-assisted breeding (GAB) in faba bean.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Plant Breeding/methods , Polymorphism, Single Nucleotide , Vicia faba/genetics , Agriculture/methods , Conservation of Natural Resources/methods , Fabaceae/classification , Fabaceae/genetics , Gene Expression Profiling/methods , Genetic Markers/genetics , Genomics/methods , Synteny , Vicia faba/metabolism
3.
Animal ; 11(8): 1270-1278, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28031067

ABSTRACT

The faba bean (Vicia faba L.) is a potential source of proteins for poultry, mainly for laying hens whose protein requirements are lower than those of other birds such as growing broilers and turkeys. However, this feedstuff contains anti-nutritional factors, that is, vicine (V) and convicine (C) that are already known to reduce laying hen performance. The aim of the experiment reported here was to evaluate the effects of a wide range of dietary V and C concentrations in laying hens. Two trials were performed with laying hens fed diets including 20% or 25% of faba bean genotypes highly contrasting in V+C content. In Trial 1, faba beans from two tannin-containing cultivars, but with high or low V+C content were dehulled in order to eliminate the tannin effect. In addition to the contrasting levels of V+C in the two cultivars, two intermediate levels of V+C were obtained by mixing the two cultivars (70/30 and 30/70). In Trial 2, two isogenic zero-tannin faba bean genotypes with high or low V+C content were used. In both trials, a classical corn-soybean diet was also offered to control hens. Each experimental diet was given to 48 laying hens for 140 (Trial 1) or 89 (Trial 2) days. Laying performance and egg quality were measured. The redox sensitivity of red blood cells (RBCs) was assessed by measuring hemolysis and reduced glutathione (GSH) concentration in these cells. Egg weight was significantly reduced by the diets containing the highest concentrations of V+C (P<0.0001) in Trial 1 and slightly reduced (P<0.10) in Trial 2, but only weak linear relationships between egg weight and dietary V+C concentration were established. No negative effect of V+C level was observed for egg quality parameters. In contrast, certain parameters (i.e. Haugh units, yolk color) were improved by feeding low V+C diets (P<0.05). Hemolysis of RBCs was higher in hens fed high V+C diets. A decrease in GSH concentration in RBCs of hens fed the highest levels of V+C was observed. Faba bean genotypes with low concentrations of V+C can therefore be used in laying hen diets up to 25% without any detrimental effects on performance levels or egg characteristics, without any risk of hemolysis of RBCs.


Subject(s)
Animal Feed , Chickens/physiology , Glucosides/pharmacology , Pyrimidinones/pharmacology , Uridine/analogs & derivatives , Vicia faba/chemistry , Animals , Diet/veterinary , Erythrocytes/drug effects , Female , Genotype , Glucosides/analysis , Ovulation/drug effects , Ovum/drug effects , Pyrimidinones/analysis , Glycine max , Tannins/analysis , Uridine/analysis , Uridine/pharmacology , Vicia faba/genetics
4.
Theor Appl Genet ; 114(1): 59-66, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17013617

ABSTRACT

The antinutritional factors (ANFs) present in Vicia spp. seeds are a major constraint to the wider utilization of these crops as grain legumes. In the case of faba bean (Vicia faba L.), a breeding priority is the absence vicine and convicine (v-c); responsible for favism in humans and for the reduced animal performance or low egg production in laying hens. The discovery of a spontaneous mutant allele named vc-, which induces a 10-20 fold reduction of v-c contents, may facilitate the process. However, the high cost and difficulty of the chemical detection of v-c seriously restricts the advances in breeding-selection. To identify random amplified polymorphic DNA (RAPD) markers linked to this gene, we have analysed an F(2 )population derived from a cross between a line with high v-c content (Vf6) and the vc- genotype (line 1268). Quantification of v-c was done by spectrophotometry on the parents and the F(2 )population (n = 136). By using bulked segregant analysis (BSA), two RAPD markers linked in coupling and repulsion phase to the allele vc- were identified and further converted into sequence characterized amplified regions (SCARs). Amplification of SCARS was more consistent, although the initial polymorphism between pools was lost. To recover the polymorphisms several approaches were explored. Restriction digestion with HhaI (for SCAR SCH01(620)) and RsaI (for SCAR SCAB12(850)) revealed clear differences between the parental lines. The simultaneous use of the two cleavage amplified polymorphism (CAP) markers will allow the correct fingerprinting of faba bean plants and can be efficiently used in breeding selection to track the introgression of the vc- allele to develop cultivars with low v-c content and improved nutritional value.


Subject(s)
Glucosides/analysis , Pyrimidinones/analysis , Random Amplified Polymorphic DNA Technique , Uridine/analogs & derivatives , Vicia faba/chemistry , Vicia faba/genetics , Animals , Crosses, Genetic , Genetic Markers , Humans , Polymorphism, Genetic , Uridine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...