Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Endocrinol ; 176(4): 405-411, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28100629

ABSTRACT

BACKGROUND: We developed a modified-release hydrocortisone, Chronocort, to replace the cortisol rhythm in patients with congenital adrenal hyperplasia. Food, alcohol and pH affect drug absorption, and it is important to assess their impact when replicating a physiological rhythm. SUBJECTS AND METHODS: In vitro dissolution to study impact of alcohol and pH on Chronocort. A phase 1, three-period, cross over study in 18 volunteers to assess the impact of food on Chronocort and to compare bioavailability to immediate-release hydrocortisone. RESULTS: In vitro dissolution of Chronocort was not affected by gastrointestinal pH up to 6.0 nor by an alcohol content up to 20% v/v. Food delayed and reduced the rate of absorption of Chronocort as reflected by a longer Tmax (fed vs fasted: 6.75 h vs 4.5 h, P = 0005) and lower Cmax (549.49 nmol/L vs 708.46 nmol/L, ratio 77% with CI 71-85). Cortisol exposure was similar in fed and fasted state: Geo LSmean ratio (CI) AUC0t for fed/fasted was 108.33% (102.30-114.72%). Cortisol exposure was higher for Chronocort compared to immediate-release hydrocortisone: Geo LSmean ratios (CI) 118.83% (111.58-126.54%); however, derived free cortisol showed cortisol exposure CIs were within 80.0-125.0%: Geo LSmean ratio (CI) for AUC0t 112.73% (105.33-120.65%). CONCLUSIONS: Gastric pH ≤6.0 and alcohol do not affect hydrocortisone release from Chronocort. Food delays Chronocort absorption, but cortisol exposure is similar in the fasted and fed state and exposure as assessed by free cortisol is similar between Chronocort and immediate-release hydrocortisone.


Subject(s)
Adrenal Hyperplasia, Congenital/drug therapy , Food , Hydrocortisone/therapeutic use , Adrenal Hyperplasia, Congenital/blood , Adult , Anti-Inflammatory Agents/therapeutic use , Cross-Over Studies , Ethanol/chemistry , Female , Humans , Hydrocortisone/administration & dosage , Hydrogen-Ion Concentration , Male
2.
Int J Pharm ; 496(1): 86-94, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26551434

ABSTRACT

Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200-300s(-1)) and injection moulding (approximately 900s(-1)). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena.

3.
Int J Pharm ; 493(1-2): 251-9, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26188317

ABSTRACT

Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200-300 s(-1)) and injection moulding (approximately 900 s(-1)). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena.


Subject(s)
Acrylates/chemistry , Cellulose/analogs & derivatives , Polymers/chemistry , Technology, Pharmaceutical/methods , Cellulose/chemistry , Glass , Models, Theoretical , Phase Transition , Rheology , Temperature
4.
J Pharm Sci ; 97(9): 3957-71, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18228596

ABSTRACT

Poly(methacrylic acid-methyl methacrylate, 1:2) (Eudragit S) is a commonly used pH-responsive polymer that can facilitate delivery to the ileo-colonic region of the gastrointestinal tract. Different plasticizers have been used to reduce the brittleness of Eudragit S films for the coating of solid dosage forms. To better correlate the dissolution rates of Eudragit S films, we have examined their dielectric response to understand the specific polymer-plasticizer interactions. Solvent cast Eudragit S films were prepared with one of four citrate plasticizers ranging from low to moderate aqueous solubility. Film dissolution was determined using a two-compartment permeation cell. Dielectric properties were measured by thermally stimulated depolarisation currents (TSDC). Secondary relaxations were deconvoluted and identified. The glass transition temperature (T(g)) was measured using TSDC, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Dissolution of the films was influenced by the solubility and structure of the plasticizers. While no correlation was found among the T(g)'s obtained by TSDC, DSC, and DMA with dissolution time, the low temperature TSDC spectra showed a relationship of the total secondary relaxation area and relaxation of the carboxylic acid functional group with dissolution time. Dielectric secondary relaxations may be a good probe to predict plasticizer influence on dissolution of Eudragit S polymer films.


Subject(s)
Acrylates/chemistry , Plasticizers/chemistry , Calorimetry, Differential Scanning , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...