Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 151(17): 174305, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703511

ABSTRACT

We report benchmark results for dissociative photoionization (DPI) spectroscopy and dynamics of the NO molecule in the region of the σ* shape resonance in the ionization leading to the NO+(c3Π) ionic state. The experimental study combines well characterized extreme ultraviolet (XUV) circularly polarized synchrotron radiation, delivered at the DESIRS beamline (SOLEIL), with ion-electron coincidence 3D momentum spectroscopy. The measured (N+, e) kinetic energy correlation diagrams reported at four discrete photon energies in the extended 23-33 eV energy range allow for resolving the different active DPI reactions and underline the importance of spectrally resolved studies using synchrotron radiation in the context of time-resolved studies where photoionization is induced by broadband XUV attosecond pulses. In the dominant DPI reaction which leads to the NO+(c3Π) ionic state, photoionization dynamics across the σ* shape resonance are probed by molecular frame photoelectron angular distributions where the parallel and perpendicular transitions are highlighted, as well as the circular dichroism CDAD(θe) in the molecular frame. The latter also constitute benchmark references for molecular polarimetry. The measured dynamical parameters are well described by multichannel Schwinger configuration interaction calculations. Similar results are obtained for the DPI spectroscopy of highly excited NO+ electronic states populated in the explored XUV photon energy range.

2.
J Chem Phys ; 147(1): 013945, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28688417

ABSTRACT

The photodissociation dynamics of bromochloromethane (CH2BrCl) have been investigated at the maximum of the first absorption band, at the excitation wavelengths 203 and 210 nm, using the slice imaging technique in combination with a probe detection of bromine-atom fragments, Br(2P3/2) and Br*(2P1/2), via (2 + 1) resonance enhanced multiphoton ionization. Translational energy distributions and angular distributions reported for both Br(2P3/2) and Br*(2P1/2) fragments show two contributions for the Br(2P3/2) channel and a single contribution for the Br*(2P1/2) channel. High level ab initio calculations have been performed in order to elucidate the dissociation mechanisms taking place. The computed absorption spectrum and potential energy curves indicate the main contribution of the populated 4A″, 5A', and 6A' excited states leading to a C-Br cleavage. Consistently with the results, the single contribution for the Br*(2P1/2) channel has been attributed to direct dissociation through the 6A' state as well as an indirect dissociation of the 5A' state requiring a 5A' → 4A' reverse non-adiabatic crossing. Similarly, a faster contribution for the Br(2P3/2) channel characterized by a similar energy partitioning and anisotropy than those for the Br*(2P1/2) channel is assigned to a direct dissociation through the 5A' state, while the slower component appears to be due to the direct dissociation on the 4A″ state.

3.
Phys Chem Chem Phys ; 19(11): 7886-7896, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28262906

ABSTRACT

The photodissociation dynamics of the methyl iodide cation has been studied using the velocity map imaging technique. A first laser pulse is used to ionize methyl iodide via a (2 + 1) REMPI scheme through the 5pπ → 6p Rydberg state two-photon transition. The produced CH3I+(X[combining tilde]2E3/2) ions are subsequently excited at several wavelengths between 242 and 260 nm. The reported translational energy distributions for the methyl and iodine ions present a Boltzmann-type unstructured distribution at low excitation energies as well as a recoiled narrow structure at higher excitation energies highlighting two different dissociation processes. High level ab initio calculations have been performed in order to obtain a deeper understanding of the photodissociation dynamics of the CH3I+ ion. Direct dissociation on a repulsive state from the manifold of states representing the B[combining tilde] excited state leads to CH3+(X[combining tilde]1A1') + I*(2P1/2), while the CH3 + I+(3P2) channel is populated through an avoided crossing outside the Franck-Condon region. In contrast, an indirect process involving the transfer of energy from highly excited electronic states to the ground state of the ion is responsible for the observed Boltzmann-type distributions.

SELECTION OF CITATIONS
SEARCH DETAIL
...