Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 710, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400781

ABSTRACT

The protracted nature of the 2016-2017 central Italy seismic sequence, with multiple damaging earthquakes spaced over months, presented serious challenges for the duty seismologists and emergency managers as they assimilated the growing sequence to advise the local population. Uncertainty concerning where and when it was safe to occupy vulnerable structures highlighted the need for timely delivery of scientifically based understanding of the evolving hazard and risk. Seismic hazard assessment during complex sequences depends critically on up-to-date earthquake catalogues-i.e., data on locations, magnitudes, and activity of earthquakes-to characterize the ongoing seismicity and fuel earthquake forecasting models. Here we document six earthquake catalogues of this sequence that were developed using a variety of methods. The catalogues possess different levels of resolution and completeness resulting from progressive enhancements in the data availability, detection sensitivity, and hypocentral location accuracy. The catalogues range from real-time to advanced machine-learning procedures and highlight both the promises as well as the challenges of implementing advanced workflows in an operational environment.

2.
Sci Rep ; 9(1): 6921, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061514

ABSTRACT

We present the first high-quality catalog of early aftershocks of the three mainshocks of the 2016 central Italy Amatrice-Visso-Norcia normal faulting sequence. We located 10,574 manually picked aftershocks with a robust probabilistic, non-linear method achieving a significant improvement in the solution accuracy and magnitude completeness with respect to previous studies. Aftershock distribution and relocated mainshocks give insight into the complex architecture of major causative and subsidiary faults, thus providing crucial constraints on multi-segment rupture models. We document reactivation and kinematic inversion of a WNW-dipping listric structure, referable to the inherited Mts Sibillini Thrust (MST) that controlled segmentation of the causative normal faults. Spatial partitioning of aftershocks evidences that the MST lateral ramp had a dual control on rupture propagation, behaving as a barrier for the Amatrice and Visso mainshocks, and later as an asperity for the Norcia mainshock. We hypothesize that the Visso mainshock re-activated also the deep part of an optimally oriented preexisting thrust. Aftershock patterns reveal that the Amatrice Mw5.4 aftershock and the Norcia mainshock ruptured two distinct antithetic faults 3-4 km apart. Therefore, our results suggest to consider both the MST cross structure and the subsidiary antithetic fault in the finite-fault source modelling of the Norcia earthquake.

3.
Surv Geophys ; 39(5): 1009-1033, 2018.
Article in English | MEDLINE | ID: mdl-30956376

ABSTRACT

The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

SELECTION OF CITATIONS
SEARCH DETAIL
...