Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 13(1): 309-337.e3, 2022.
Article in English | MEDLINE | ID: mdl-34509687

ABSTRACT

BACKGROUND & AIMS: Colonic motor patterns have been described by a number of different groups, but the neural connectivity and ganglion architecture supporting patterned motor activity have not been elucidated. Our goals were to describe quantitatively, by region, the structural architecture of the mouse enteric nervous system and use functional calcium imaging, pharmacology, and electrical stimulation to show regional underpinnings of different motor patterns. METHODS: Excised colon segments from mice expressing the calcium indicator GCaMP6f or GCaMP6s were used to examine spontaneous and evoked (pharmacologic or electrical) changes in GCaMP-mediated fluorescence and coupled with assessment of colonic motor activity, immunohistochemistry, and confocal imaging. Three-dimensional image reconstruction and statistical methods were used to describe quantitatively mouse colon myenteric ganglion structure, neural and vascular network patterning, and neural connectivity. RESULTS: In intact colon, regionally specific myenteric ganglion size, architecture, and neural circuit connectivity patterns along with neurotransmitter-receptor expression underlie colonic motor patterns that define functional differences along the colon. Region-specific effects on spontaneous, evoked, and chemically induced neural activity contribute to regional motor patterns, as does intraganglionic functional connectivity. We provide direct evidence of neural circuit structural and functional regional differences that have only been inferred in previous investigations. We include regional comparisons between quantitative measures in mouse and human colon that represent an important advance in showing the usefulness and relevance of the mouse system for translation to the human colon. CONCLUSIONS: There are several neural mechanisms dependent on myenteric ganglion architecture and functional connectivity that underlie neurogenic control of patterned motor function in the mouse colon.


Subject(s)
Enteric Nervous System , Gastrointestinal Motility , Animals , Colon , Mice
2.
Front Physiol ; 12: 652714, 2021.
Article in English | MEDLINE | ID: mdl-34408655

ABSTRACT

The peristaltic contraction and relaxation of intestinal circular and longitudinal smooth muscles is controlled by synaptic circuit elements that impinge upon phenotypically diverse neurons in the myenteric plexus. While electrophysiological studies provide useful information concerning the properties of such synaptic circuits, they typically involve tissue disruption and do not correlate circuit activity with biochemically defined neuronal phenotypes. To overcome these limitations, mice were engineered to express the sensitive, fast Ca2+ indicator GCaMP6f selectively in neurons that express the acetylcholine (ACh) biosynthetic enzyme choline acetyltransfarse (ChAT) thereby allowing rapid activity-driven changes in Ca2+ fluorescence to be observed without disrupting intrinsic connections, solely in cholinergic myenteric ganglion (MG) neurons. Experiments with selective receptor agonists and antagonists reveal that most mouse colonic cholinergic (i.e., GCaMP6f+/ChAT+) MG neurons express nicotinic ACh receptors (nAChRs), particularly the ganglionic subtype containing α3 and ß4 subunits, and most express ionotropic serotonin receptors (5-HT3Rs). Cholinergic MG neurons also display small, spontaneous Ca2+ transients occurring at ≈ 0.2 Hz. Experiments with inhibitors of Na+ channel dependent impulses, presynaptic Ca2+ channels and postsynaptic receptor function reveal that the Ca2+ transients arise from impulse-driven presynaptic activity and subsequent activation of postsynaptic nAChRs or 5-HT3Rs. Electrical stimulation of axonal connectives to MG evoked Ca2+ responses in the neurons that similarly depended on nAChRs or/and 5-HT3Rs. Responses to single connective shocks had peak amplitudes and rise and decay times that were indistinguishable from the spontaneous Ca2+ transients and the largest fraction had brief synaptic delays consistent with activation by monosynaptic inputs. These results indicate that the spontaneous Ca2+ transients and stimulus evoked Ca2+ responses in MG neurons originate in circuits involving fast chemical synaptic transmission mediated by nAChRs or/and 5-HT3Rs. Experiments with an α7-nAChR agonist and antagonist, and with pituitary adenylate cyclase activating polypeptide (PACAP) reveal that the same synaptic circuits display extensive capacity for presynaptic modulation. Our use of non-invasive GCaMP6f/ChAT Ca2+ imaging in colon segments with intrinsic connections preserved, reveals an abundance of direct and modulatory synaptic influences on cholinergic MG neurons.

3.
Front Physiol ; 11: 128, 2020.
Article in English | MEDLINE | ID: mdl-32153427

ABSTRACT

Irises isolated from the eyes of diverse species constrict when exposed to light. Depending on species this intrinsic photomechanical transduction response (PMTR) requires either melanopsin or cryptochrome (CRY) photopigment proteins, generated by their respective association with retinoid or flavin adenine dinucleotide (FAD) chromophores. Although developmentally relevant circadian rhythms are also synchronized and reset by these same proteins, the cell type, mechanism, and specificity of photomechanical transduction (PMT) and its relationship to circadian processes remain poorly understood. Here we show that PMTRs consistent with CRY activation by 430 nm blue light occur in developing chicken iris striated muscle, identify relevant mechanisms, and demonstrate that similar PMTRs occur in striated iris and pectoral muscle fibers, prevented in both cases by knocking down CRY gene transcript levels. Supporting CRY activation, iris PMTRs were reduced by inhibiting flavin reductase, but unaffected by melanopsin antagonism. The largest iris PMTRs paralleled the developmental predominance of striated over smooth muscle fibers, and shared their requirement for extracellular Ca2+ influx and release of intracellular Ca2+. Photo-stimulation of identified striated myotubes maintained in dissociated culture revealed the cellular and molecular bases of PMT. Myotubes in iris cell cultures responded to 435 nm light with increased intracellular Ca2+ and contractions, mimicking iris PMTRs and their spectral sensitivity. Interestingly PMTRs featuring contractions and requiring extracellular Ca2+ influx and release of intracellular Ca2+ were also displayed by striated myotubes derived from pectoral muscle. Consistent with these findings, cytosolic CRY1 and CRY2 proteins were detected in both iris and pectoral myotubes, and knocking down myotube CRY1/CRY2 gene transcript levels specifically blocked PMTRs in both cases. Thus CRY-mediated PMT is not unique to iris, but instead reflects a more general feature of developing striated muscle fibers. Because CRYs are core timing components of circadian clocks and CRY2 is critical for circadian regulation of myogenic differentiation CRY-mediated PMT may interact with cell autonomous clocks to influence the progression of striated muscle development.

4.
J Neurosci ; 38(25): 5788-5798, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29789376

ABSTRACT

Epithelial cells of the colon provide a vital interface between the internal environment (lumen of the colon) and colon parenchyma. To examine epithelial-neuronal signaling at this interface, we analyzed mice in which channelrhodopsin (ChR2) was targeted to either TRPV1-positive afferents or to villin-expressing colon epithelial cells. Expression of a ChR2-EYFP fusion protein was directed to either primary sensory neurons or to colon epithelial cells by crossing Ai32 mice with TRPV1-Cre or villin-Cre mice, respectively. An ex vivo preparation of the colon was used for single-fiber analysis of colon sensory afferents of the pelvic nerve. Afferents were characterized using previously described criteria as mucosal, muscular, muscular-mucosal, or serosal and then tested for blue light-induced activation. Light activation of colon epithelial cells produced robust firing of action potentials, similar to that elicited by physiologic stimulation (e.g., circumferential stretch), in 50.5% of colon afferents of mice homozygous for ChR2 expression. Light-induced activity could be reduced or abolished in most fibers using a cocktail of purinergic receptor blockers suggesting ATP release by the epithelium contributed to generation of sensory neuron action potentials. Using electromyographic recording of visceromotor responses we found that light stimulation of the colon epithelium evoked behavioral responses in Vil-ChR2 mice that was similar to that seen with balloon distension of the colon. These ex vivo and in vivo data indicate that light stimulation of colon epithelial cells alone, without added mechanical or chemical stimuli, can directly activate colon afferents and elicit behavioral responses.SIGNIFICANCE STATEMENT Abdominal pain that accompanies inflammatory diseases of the bowel is particularly vexing because it can occur without obvious changes in the structure or inflammatory condition of the colon. Pain reflects abnormal sensory neuron activity that may be controlled in part by release of substances from lining epithelial cells. In support of this mechanism we determined that blue-light stimulation of channelrhodopsin-expressing colon epithelial cells could evoke action potential firing in sensory neurons and produce changes in measures of behavioral sensitivity. Thus, activity of colon epithelial cells alone, without added mechanical or chemical stimuli, is sufficient to activate pain-sensing neurons.


Subject(s)
Colon/physiology , Intestinal Mucosa/physiology , Intestinal Mucosa/radiation effects , Sensory Receptor Cells/physiology , Sensory Receptor Cells/radiation effects , Action Potentials/physiology , Action Potentials/radiation effects , Animals , Colon/innervation , Colon/radiation effects , Female , Lasers , Light , Male , Mice , Optogenetics
5.
Mol Cell Neurosci ; 85: 170-182, 2017 12.
Article in English | MEDLINE | ID: mdl-29017814

ABSTRACT

Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide, widely expressed in the nervous system (Vaudry et al., 2009; Starr and Margiotta, 2016). At neuronal synapses where transmission is mediated by nicotinic acetylcholine receptors (nAChRs) transient PACAP exposure increases the frequency and amplitude (FS and AS) of spontaneous excitatory postsynaptic currents (sEPSCs) within minutes. This short-term (ST) plasticity requires high-affinity PACAP receptor (PAC1R) signaling via adenylate cyclase (AC), cyclic AMP (cAMP), Protein kinase A (PKA) and obligatory nAChR-dependent stimulation of nitric oxide (NO) synthesis to retrogradely increase presynaptic ACh release (Pugh et al., 2010; Jayakar et al., 2014). Remarkably, synaptic changes persist 48h after transient PACAP exposure, featuring a similar increase in FS and an even larger increase in AS. Pharmacological studies reveal that this long-term (LT) plasticity requires PACAP/PAC1R signaling via AC and cAMP, but unlike ST plasticity, Phospholipase-C and new gene transcription are also necessary, whereas PKA, nAChR, impulse and NO synthase (NOS1) activities are dispensable. In accord with the increases in FS and AS characterizing LT plasticity, miniature EPSC (mEPSC) frequency, ACh release (quantal content), and mEPSC amplitude (quantal size) all increased in parallel. Consistent with these functional changes, imaging studies reveal that LT, but not ST, PACAP-induced plasticity is accompanied by increases in presynaptic terminal size, postsynaptic nAChR cluster size and density, and the size and density of co-localized pre- and post-synpatic sites. Thus PACAP/PAC1R signaling induces mechanistically distinct forms of synaptic plasticity, with a ST form arising from acute, membrane-delimited processes, and a LT form arising from transcription-dependent alterations in the function and structural arrangement of pre- and post-synaptic components.


Subject(s)
Neuronal Plasticity/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Signal Transduction/physiology , Synapses/metabolism , Animals , Autonomic Nervous System/metabolism , Chick Embryo , Excitatory Postsynaptic Potentials/drug effects , Receptors, Nicotinic/metabolism , Synaptic Transmission/physiology
6.
Mol Cell Neurosci ; 63: 1-12, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25168001

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such coordination has broad relevance for understanding the control of autonomic synapses and consequent visceral functions.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Neuronal Plasticity , Nitric Oxide Synthase Type I/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Nicotinic/metabolism , Synapses/metabolism , Animals , Autonomic Nervous System/cytology , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiology , Calcium/metabolism , Cells, Cultured , Chick Embryo , Neurons/metabolism , Neurons/physiology , Nitric Oxide/metabolism , Protein Binding , Synapses/physiology
7.
Mol Pharmacol ; 80(1): 97-109, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21502378

ABSTRACT

Abelson family kinases (AFKs; Abl1, Abl2) are non-receptor tyrosine kinases (NRTKs) implicated in cancer, but they also have important physiological roles that include regulating synaptic structure and function. Recent studies using Abl-deficient mice and the antileukemia drug STI571 [imatinib mesylate (Gleevec); Novartis], which potently and selectively blocks Abl kinase activity, implicate AFKs in regulating presynaptic neurotransmitter release in hippocampus and postsynaptic clustering of nicotinic acetylcholine receptors (nAChRs) in muscle. Here, we tested whether AFKs are relevant for regulating nAChRs and nAChR-mediated synapses on autonomic neurons. AFK immunoreactivity was detected in ciliary ganglion (CG) lysates and neurons, and STI571 application blocked endogenous Abl tyrosine kinase activity. With similar potency, STI571 specifically reduced whole-cell current responses generated by both nicotinic receptor subtypes present on CG neurons (α3*- and α7-nAChRs) and lowered the frequency and amplitude of α3*-nAChR-mediated excitatory postsynaptic currents. Quantal analysis indicated that the synaptic perturbations were postsynaptic in origin, and confocal imaging experiments revealed they were unaccompanied by changes in nAChR clustering or alignment with presynaptic terminals. The results indicate that in autonomic neurons, Abl kinase activity normally supports postsynaptic nAChR function to sustain nAChR-mediated neurotransmission. Such consequences contrast with the influence of Abl kinase activity on presynaptic function and synaptic structure in hippocampus and muscle, respectively, demonstrating a cell-specific mechanism of action. Finally, because STI571 potently inhibits Abl kinase activity, the autonomic dysfunction side effects associated with its use as a chemotherapeutic agent may result from perturbed α3*- and/or α7-nAChR function.


Subject(s)
Autonomic Nervous System/cytology , Neurons/physiology , Protein-Tyrosine Kinases/metabolism , Receptors, Nicotinic/physiology , Synapses/physiology , Animals , Cells, Cultured , Chick Embryo , Ganglia/enzymology , Phosphorylation , Protein-Tyrosine Kinases/antagonists & inhibitors
8.
Mol Cell Neurosci ; 43(2): 244-57, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19958833

ABSTRACT

Neuropeptides collaborate with conventional neurotransmitters to regulate synaptic output. Pituitary adenylate cyclase-activating polypeptide (PACAP) co-localizes with acetylcholine in presynaptic nerve terminals, is released by stimulation, and enhances nicotinic acetylcholine receptor- (nAChR-) mediated responses. Such findings implicate PACAP in modulating nicotinic neurotransmission, but relevant synaptic mechanisms have not been explored. We show here that PACAP acts via selective high-affinity G-protein coupled receptors (PAC(1)Rs) to enhance transmission at nicotinic synapses on parasympathetic ciliary ganglion (CG) neurons by rapidly and persistently increasing the frequency and amplitude of spontaneous, impulse-dependent nicotinic excitatory postsynaptic currents (sEPSCs). Of the canonical adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP/PAC(1)R signaling, only AC-generated signals are critical for synaptic modulation since the increases in sEPSC frequency and amplitude were mimicked by 8-Bromo-cAMP, blocked by inhibiting AC or cAMP-dependent protein kinase (PKA), and unaffected by inhibiting PLC. Despite its ability to increase agonist-induced nAChR currents, PACAP failed to influence nAChR-mediated impulse-independent miniature EPSC amplitudes (quantal size). Instead, evoked transmission assays reveal that PACAP/PAC(1)R signaling increased quantal content, indicating that it modulates synaptic function by increasing vesicular ACh release from presynaptic terminals. Lastly, signals generated by the retrograde messenger, nitric oxide- (NO-) are critical for the synaptic modulation since the PACAP-induced increases in spontaneous EPSC frequency, amplitude and quantal content were mimicked by NO donor and absent after inhibiting NO synthase (NOS). These results indicate that PACAP/PAC(1)R activation recruits AC-dependent signaling that stimulates NOS to increase NO production and control presynaptic transmitter output at neuronal nicotinic synapses.


Subject(s)
Acetylcholine/metabolism , Neurons/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Nicotinic/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Signal Transduction/physiology , Synapses/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Analysis of Variance , Animals , Biophysics , Cells, Cultured , Chick Embryo , Cholinergic Agents/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Electric Stimulation , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Ganglia, Sympathetic/cytology , Muscarine/pharmacology , Neurons/drug effects , Nicotine/pharmacology , Nitric Oxide/metabolism , Patch-Clamp Techniques , Peptide Fragments/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Potassium Chloride/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Signal Transduction/drug effects , Synapses/drug effects , Synapsins/metabolism , Time Factors
9.
J Mol Neurosci ; 36(1-3): 141-56, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18594777

ABSTRACT

Neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), can influence diverse cellular processes over a broad temporal range. In ciliary ganglion (CG) neurons, for example, PACAP binding to high-affinity PAC1 receptors triggers transduction cascades that both rapidly modulate nicotinic receptors and synapses and support long-term survival. Since PACAP/PAC1 signaling recruits intracellular messengers and effectors that potently alter transcription, we examined its activation of the transcription factor CREB and then tested for changes in gene expression. PACAP/PAC1 signaling rapidly induced prolonged CREB activation in CG neurons by a phospholipase C -independent mechanism supported by Ca2+-influx, adenylate cyclase, and effectors, including protein kinase C (PKC) and possibly PKA. Since PACAP is abundant in the CG and released from depolarized presynaptic terminals, it is well suited to regulate gene expression relevant to neuronal and synaptic development. Gene array screens conducted using RNA from CG cultures grown with PACAP for 1/4, 24, or 96 h revealed a time-dependent pattern of > 600 regulated transcripts, including several encoding proteins implicated in synaptic function, neuronal survival, and development. The results underscore rapid, neuromodulatory, and long-term, neurotrophic consequences of PAC1 signaling in CG neurons and suggest that PACAP exerts such diverse influences by altering the expression of specific gene transcripts in a time-dependent fashion.


Subject(s)
Ganglia, Parasympathetic , Gene Expression Regulation , Neurons/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Animals , Chick Embryo , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Ganglia, Parasympathetic/cytology , Ganglia, Parasympathetic/physiology , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Signal Transduction/physiology , Time Factors
10.
Dev Biol ; 291(1): 182-91, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16426601

ABSTRACT

Membrane activity upregulates brain derived neurotrophic factor (BDNF) expression to coordinately support neuronal survival in many systems. In parasympathetic ciliary ganglion (CG) neurons, activity mimicked by KCl depolarization provides nearly full trophic support. While BDNF has been considered unable to influence CG neuronal survival, we now document its expression during CG development and show that low concentrations do support survival via high-affinity TrkB receptors. Furthermore, a contribution of BDNF to activity-induced trophic support was demonstrated by showing that KCl depolarization increased BDNF mRNA and protein in, and release of BDNF from, CG neuron cultures. Application of anti-BDNF blocking antibody or mitogen activated protein kinase (MAPK) kinase inhibitor, attenuated depolarization-supported survival, implicating canonical BDNF/TrkB signaling. Ca2+-Calmodulin kinase II (CaMKII) was also required since its inhibition combined with anti-BDNF or MAPK kinase inhibitor abolished or greatly reduced the trophic effects of depolarization. Membrane activity may thus support CG neuronal survival both by stimulating release of BDNF that binds high-affinity TrkB receptors to activate MAPK and by recruiting CaMKII. This mechanism could have relevance late in development in vivo as ganglionic transmission and the effectiveness of BDNF over other growth factors both increase.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Ganglia, Parasympathetic/cytology , Neurons/physiology , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Survival , Cells, Cultured , Chick Embryo , Embryo, Mammalian/cytology , Embryo, Nonmammalian , Ganglia, Parasympathetic/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Membrane Potentials , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neurons/metabolism , Potassium Chloride/pharmacology , RNA, Messenger/biosynthesis , Receptor, trkB/metabolism , Signal Transduction
11.
Mol Cell Neurosci ; 31(3): 586-95, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16431129

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed in the parasympathetic ciliary ganglion (CG) and modulates nicotinic acetylcholine receptor function. PACAP also provides trophic support, promoting partial survival of CG neurons in culture and full survival when accompanied by membrane depolarization. We probed the adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP to determine their respective roles in supporting neuronal survival and examined their interaction with signals generated by membrane activity. While PLC-dependent signaling was dispensable, AC-generated signals proved critical for PACAP to support neuronal survival. Specifically, PACAP-supported survival was mimicked by 8Br-cAMP and blocked by inhibiting either PKA or the phosphorylation of mitogen-activated protein kinase (MAPK). The ability of PACAP to promote survival was additionally dependent on spontaneous activity as blocking Na+ or Ca2+ channel currents completely abrogated trophic effects. Our results underscore the importance of coordinated MAPK- and activity-generated signals in transducing neuropeptide-mediated parasympathetic neuronal survival.


Subject(s)
Action Potentials/physiology , Ganglia, Parasympathetic/embryology , Ganglia, Parasympathetic/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Neurons/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Action Potentials/drug effects , Adenylyl Cyclases/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Channels/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Chick Embryo , Cyclic AMP/analogs & derivatives , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Dose-Response Relationship, Drug , Ganglia, Parasympathetic/cytology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurons/cytology , Neurons/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Sodium Channel Blockers/pharmacology , Sodium Channels/drug effects , Sodium Channels/metabolism , Type C Phospholipases/metabolism
12.
Dev Biol ; 286(2): 521-36, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16165122

ABSTRACT

Differentiation of neural crest-derived noradrenergic neurons depends upon signaling mediated downstream of BMP binding to cognate receptors and involving cAMP. Compiled data from many groups suggest that neurogenesis and cell type-specific noradrenergic marker gene regulation is coordinated through the expression and function of the basic helix-loop-helix DNA binding protein HAND2 and the homeodomain DNA binding protein Phox2a. However, information detailing how BMP-mediated signaling and signaling through cAMP are coordinated has been lacking. We now provide compelling data suggesting that differentiation of noradrenergic sympathetic ganglion neurons depends upon both canonical and non-canonical pathways of BMP-mediated signaling. The non-canonical pathway involves the activation of protein kinase A (PKA) independent of cAMP. This is a novel mechanism in neural crest-derived cells and is necessary to support neurogenesis as well as aspects of DBH promoter regulation involving HAND2 phosphorylation and dimerization. The expression of transcripts encoding HAND2 and Phox2a is regulated via canonical BMP signaling and thus affects both neurogenesis and cell type-specific gene expression. Interestingly, cAMP- and MapK-mediated signaling modulate specific target sites in both the canonical and non-canonical BMP pathways. Activity of MapK is required for HAND2 transcription and thus affects neurogenesis. Signaling affected by cAMP is necessary for the transcription of Phox2a as well as regulation of DBH promoter transactivation by Phox2a and HAND2. We suggest a comprehensive model that shows how BMP- and cAMP-mediated intracellular signaling integrate neurogenesis and cell type-specific noradrenergic marker gene expression and function.


Subject(s)
Bone Morphogenetic Proteins/physiology , Cell Differentiation , Cyclic AMP-Dependent Protein Kinases/metabolism , Embryonic Development , Neurons/cytology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Bone Morphogenetic Protein 4 , Bone Morphogenetic Proteins/metabolism , Cyclic AMP/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Neural Crest/cytology , Quail/embryology
13.
J Neurosci ; 24(18): 4340-50, 2004 May 05.
Article in English | MEDLINE | ID: mdl-15128848

ABSTRACT

Parasympathetic neurons do not require neurotrophins for survival and are thought to lack high-affinity neurotrophin receptors (i.e., trks). We report here, however, that mRNAs encoding both brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (trkB) are expressed in the parasympathetic chick ciliary ganglion (CG) and that BDNF-like protein is present in the ganglion and in the iris, an important peripheral target of ciliary neurons. Moreover, CG neurons express surface trkB and exogenous BDNF not only initiates trk-dependent signaling, but also alters nicotinic acetylcholine receptor (nAChR) expression and synaptic transmission. In particular, BDNF applied to CG neurons rapidly activates cAMP-dependent response element-binding protein (CREB), and over the long-term selectively upregulates expression of alpha7-subunit-containing, homomeric nAChRs (alpha7-nAChRs), increasing alpha7-subunit mRNA levels, alpha7-nAChR surface sites, and alpha7-nAChR-mediated whole-cell currents. At nicotinic synapses formed on CG neurons in culture, brief and long-term BDNF treatments also increase the frequency of spontaneous EPSCs, most of which are mediated by heteromeric nAChRs containing alpha3, alpha5, beta4, and beta2 subunits (alpha3*-nAChRs) with a minor contribution from alpha7-nAChRs. Our findings demonstrate unexpected roles for BDNF-induced, trk-dependent signaling in CG neurons, both in regulating expression of alpha7-nAChRs and in enhancing transmission at alpha3*-nAChR-mediated synapses. The presence of BDNF-like protein in CG and iris target coupled with that of functional trkB on CG neurons raise the possibility that signals generated by endogenous BDNF similarly influence alpha7-nAChRs and nicotinic synapses in vivo.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Ganglia, Parasympathetic/metabolism , Neurons/metabolism , Receptor, trkB/metabolism , Receptors, Nicotinic/metabolism , Signal Transduction/physiology , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/pharmacology , Cells, Cultured , Chick Embryo , Cyclic AMP Response Element-Binding Protein/metabolism , Excitatory Postsynaptic Potentials/physiology , Ganglia, Parasympathetic/cytology , Ganglia, Parasympathetic/embryology , Iris/innervation , Iris/metabolism , Neurons/cytology , Neurons/drug effects , Patch-Clamp Techniques , Phosphorylation/drug effects , RNA, Messenger/metabolism , Receptor, trkB/genetics , Receptors, Nicotinic/genetics , Synaptic Transmission/physiology , Up-Regulation/drug effects , alpha7 Nicotinic Acetylcholine Receptor
14.
Mol Pharmacol ; 63(2): 311-24, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12527802

ABSTRACT

Neuronal nicotinic acetylcholine receptors (nAChRs) are widespread, diverse ion channels involved in synaptic signaling, addiction, and disease. Despite their importance, the relationship between native nAChR subunit composition and function remains poorly defined. Chick ciliary ganglion neurons express two major nAChR types: those recognized by alpha-bungarotoxin (alphaBgt), nearly all of which contain only alpha7 subunits (alpha7-nAChRs) and those insensitive to alphaBgt, which contain alpha3, alpha5, beta4, and, in some cases, beta2 subunits (alpha3*-nAChRs). We explored the relationship between nAChR composition and channel function using toxins recognizing alpha7 subunits (alphaBgt), and alpha3/beta4 (alpha-conotoxin-AuIB), or alpha3/beta2 (alpha-conotoxin-MII) subunit interfaces to perturb responses induced by nicotine, alpha7-, or alpha3-selective agonists (GTS-21 or epibatidine, respectively). Using these reagents, fast-decaying whole-cell current components were attributed solely to alpha7-nAChRs, and slow-decaying components mostly to alpha3*-nAChRs. In outside-out patches, nicotine activated brief 60- and 80-pS single nAChR channel events, and mixed-duration 25- and 40-pS nAChR events. Subsequently, 60- and 80-pS nAChR events and most brief 25- and 40-pS events were attributed to alpha7-nAChRs, and long 25- and 40-pS events to alpha3*-nAChRs. alpha3*-nAChRs lacking beta2 subunits seemed responsible for long 25 pS nAChR events, whereas those containing beta2 subunits mediated the long 40 pS nAChR events that dominate single-channel records. These results reveal greater functional heterogeneity for alpha7-nAChRs than previously expected and indicate that beta2 subunits contribute importantly to alpha3*-nAChR function. By linking structural to functional nAChR subtypes, the findings also illustrate a useful pharmacological strategy for selectively targeting nAChRs.


Subject(s)
Neurons/metabolism , Receptors, Nicotinic/classification , Animals , Benzylidene Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bungarotoxins/pharmacology , Chick Embryo , Cholinergic Antagonists/pharmacology , Conotoxins/pharmacology , Kinetics , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Protein Subunits , Pyridines/pharmacology , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
15.
Mol Pharmacol ; 63(2): 419-28, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12527814

ABSTRACT

Nicotinic receptors containing alpha7 subunits are ligand-gated ion channels widely distributed in the nervous system; they influence a diverse array of events because of their high relative calcium permeability. We show here that nicotine-induced whole-cell responses generated by such receptors can be dramatically potentiated in a rapidly reversible manner by some but not all albumins. The potentiation involves increases both in potency and efficacy with no obvious differences in rise and fall times of the response. The potentiation is not reduced by removing absorbed components; it is abolished by proteolysis, suggesting that the albumin protein backbone is essential. The fact that some albumins are ineffective indicates that minor differences in amino acid sequence may be critical. Experiments with open channel blockers indicate that the potentiation involves increased responses from active receptors rather than recruitment of receptors from a previously silent pool. Single channel recordings reveal that the potentiation correlates with increased single channel opening probability, reflected in increased frequency of channel opening and increased mean channel open time. The potentiation can be exploited to overcome blockade by noncompetitive inhibitors such as beta-amyloid peptide. The results raise the possibility that endogenous compounds use the site to modulate receptor function in vivo, and suggest that the receptors may represent useful targets for therapeutic intervention in cases where they have been implicated in neuropathologies such as Alzheimer's disease.


Subject(s)
Albumins/pharmacology , Protein Subunits/drug effects , Receptors, Nicotinic/metabolism , Albumins/chemistry , Amyloid beta-Peptides/pharmacology , Animals , Cattle , Electrophysiology , Peptide Fragments/pharmacology , Serum Albumin, Bovine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...