Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(9): 6565-71, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25662612

ABSTRACT

Energy relay dyes (ERDs) have been investigated previously as a mean to achieve panchromatic spectral response in dye-sensitized solar cells via energy transfer. To reduced the distance between the ERDs and energy-accepting injection dyes (IDs) on the surface of a mesoporous titanium dioxide electrode, the ERDs were immobilized adjacent to the IDs via a sequential functionalization approach. In the first step, azidobenzoic acid molecules were co-adsorbed on the mesoporous titanium dioxide surface with the ID. In the second step, the highly selective copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition "click" reaction was employed to couple an alkyne-functionalized ERD to the azidobenzoic acid monolayer. The cycloaddition step in the mesoporous electrode was slowed dramatically due to reactants and catalysts forming agglomerates. In solar cell devices, the close proximity between the surface-immobilized ERD and energy-accepting squaraine sensitizer dyes results in energy transfer efficiencies of up to 91%. The relative improvement in device performance due to the additional ERD spectral response was 124%, which is among the highest reported. The sequential functionalization approach described herein is transferrable to other applications requiring the functionalization of electrodes with complex molecules.

2.
Adv Mater ; 25(48): 7020-6, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24123497

ABSTRACT

Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%.


Subject(s)
Polymers/chemistry , Solar Energy , Metal Nanoparticles/chemistry , Polystyrenes/chemistry , Thiophenes/chemistry , Zinc Oxide/chemistry
3.
Opt Express ; 21 Suppl 3: A305-12, 2013 May 06.
Article in English | MEDLINE | ID: mdl-24104418

ABSTRACT

The efficiency of today's most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC(70)BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

4.
Phys Chem Chem Phys ; 15(27): 11306-12, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23733016

ABSTRACT

High solubility is a requirement for energy relay dyes (ERDs) to absorb a large portion of incident light and significantly improve the efficiency of dye-sensitized solar cells (DSSCs). Two benzonitrile-soluble ERDs, BL302 and BL315, were synthesized, characterized, and resulted in a 65% increase in the efficiency of TT1-sensitized DSSCs. The high solubility (180 mM) of these ERDs allows for absorption of over 95% of incident light at their peak wavelength. The overall power conversion efficiency of DSSCs with BL302 and BL315 was found to be limited by their energy transfer efficiency of approximately 70%. Losses due to large pore size, dynamic collisional quenching of the ERD, energy transfer to desorbed sensitizing dyes and static quenching by complex formation were investigated and it was found that a majority of the losses are caused by the formation of statically quenched ERDs in solution.


Subject(s)
Coloring Agents/chemistry , Nitriles/chemistry , Solar Energy , Coloring Agents/chemical synthesis , Molecular Structure , Nitriles/chemical synthesis , Solubility
5.
Org Lett ; 15(4): 784-7, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23384416

ABSTRACT

Introduction of a naphthalocyanine moiety to phthalocyanine allows for a gradual red shift of the absorption spectrum in the resulting chromophore. Using silicon as a core atom allows for the introduction of additional siloxane side chains which mitigate dye aggregation. A dye-sensitized solar cell with this hybrid sensitizer exhibits a broad and flat IPCE of 80% between 600 and 750 nm and high photocurrent densities of 19.0 mA/cm(2).

6.
Phys Chem Chem Phys ; 14(35): 12130-40, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22850593

ABSTRACT

Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 µm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...