Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Forensic Sci ; 57(4): 923-31, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22537353

ABSTRACT

Following the September 11, 2001 terrorist attacks, letters containing Bacillus anthracis were distributed through the United States postal system killing five people. A complex forensic investigation commenced to identify the perpetrator of these mailings. A novel liquid chromatography/mass spectrometry protocol for the qualitative detection of trace levels of meglumine and diatrizoate in dried spore preparations of B. anthracis was developed. Meglumine and diatrizoate are components of radiographic imaging products that have been used to purify bacterial spores. Two separate chromatographic assays using multiple mass spectrometric analyses were developed for the detection of meglumine and diatrizoate. The assays achieved limits of detection for meglumine and diatrizoate of 1.00 and 10.0 ng/mL, respectively. Bacillus cereus T strain spores were effectively used as a surrogate for B. anthracis spores during method development and validation. This protocol was successfully applied to limited evidentiary B. anthracis spore material, providing probative information to the investigators.


Subject(s)
Bacillus anthracis/chemistry , Diatrizoate/analysis , Meglumine/analysis , Spores, Bacterial/chemistry , Chromatography, Liquid , Contrast Media/analysis , Forensic Sciences , Postal Service , Spectrometry, Mass, Electrospray Ionization
2.
J Med Chem ; 47(4): 993-8, 2004 Feb 12.
Article in English | MEDLINE | ID: mdl-14761201

ABSTRACT

A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with K(i) values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo.


Subject(s)
Amides/chemical synthesis , Propionates/chemical synthesis , Receptors, Androgen/drug effects , Amides/chemistry , Amides/pharmacology , Anabolic Agents/chemical synthesis , Anabolic Agents/chemistry , Anabolic Agents/pharmacology , Androgens , Animals , Binding, Competitive , Genes, Reporter , Humans , Ligands , Luciferases/biosynthesis , Luciferases/genetics , Male , Orchiectomy , Propionates/chemistry , Propionates/pharmacology , Prostate/chemistry , Rats , Receptors, Androgen/isolation & purification , Stereoisomerism , Structure-Activity Relationship , Transcription, Genetic
3.
J Pharmacol Exp Ther ; 304(3): 1334-40, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12604714

ABSTRACT

The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.


Subject(s)
Anilides/pharmacology , Receptors, Androgen/metabolism , Testosterone/pharmacology , Animals , Gonadal Steroid Hormones/pharmacology , Male , Rats , Rats, Sprague-Dawley
4.
J Biol Chem ; 278(2): 1005-11, 2003 Jan 10.
Article in English | MEDLINE | ID: mdl-12401802

ABSTRACT

Mercaptopurine and thioguanine, two of the most widely used antileukemic agents, exert their cytotoxic, therapeutic effects by being incorporated into DNA as deoxy-6-thioguanosine. However, the molecular mechanism(s) by which incorporation of these thiopurines into DNA translates into cytotoxicity is unknown. The solution structure of thioguanine-modified duplex DNA presented here shows that the effects of the modification on DNA structure were subtle and localized to the modified base pair. Specifically, thioguanine existed in the keto form, formed weakened Watson-Crick hydrogen bonds with cytosine and caused a modest approximately 10 degrees opening of the modified base pair toward the major groove. In contrast, thioguanine significantly altered base pair dynamics, causing an approximately 80-fold decrease in the base pair lifetime with cytosine compared with normal guanine. This perturbation was consistent with the approximately 6 degrees C decrease in DNA melting temperature of the modified oligonucleotide, the 1.13 ppm upfield shift of the thioguanine imino proton resonance, and the large increase in the exchange rate of the thioguanine imino proton with water. Our studies provide new mechanistic insight into the effects of thioguanine incorporation into DNA at the level of DNA structure and dynamics, provide explanations for the effects of thioguanine incorporation on the activity of DNA-processing enzymes, and provide a molecular basis for the specific recognition of thioguanine-substituted sites by proteins. These combined effects likely cooperate to produce the cellular responses that underlie the therapeutic effects of thiopurines.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , DNA/chemistry , DNA/drug effects , Thioguanine/pharmacology , Base Pairing , Thioguanine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...