Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 95(1): 165-172, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28177365

ABSTRACT

For horses, distinct differences in intestinal phosphate transport have been postulated to account for the unique features of hind gut fermentation compared to other monogastric animals and ruminants. So far published data on mechanisms and underlying transport proteins involved in intestinal phosphate transport in the horse are still missing. Therefore we investigated intestinal phosphate transport in horses at both functional and molecular levels. Segmental diversity of intestinal phosphate transport along the intestinal axis was documented using the Ussing chamber technique. A transcellular phosphate secretion in the jejunum was confirmed. Furthermore, 2 sodium-dependent phosphate cotransporters, NaPiIIb and PiT1, were first detected in the equine intestine at mRNA level with PiT1 being expressed in both the small and large intestine, and NaPiIIb being solely expressed in the large intestine. In the colon, unidirectional net flux rates of phosphate were significantly greater compared to flux rates in other segments ( < 0.005) suggesting the colon as a major site for phosphate absorption in horses. Phosphate transport in the colon was mainly transcellular and mediated by a sodium-gradient as documented by Ussing chamber experiments and uptake of phosphate into colonic brush border membrane vesicles. In summary, the present study demonstrated mechanisms and transporters of intestinal phosphate transport in equine intestinal tissues with distinct differences between intestinal segments providing a new basis for a better understanding of intestinal phosphate transport in horses.


Subject(s)
Horses/physiology , Intestinal Absorption/physiology , Ion Transport/physiology , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins/metabolism , Animals , Gene Expression Regulation/physiology , Intestinal Mucosa/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium-Phosphate Cotransporter Proteins/genetics
2.
Article in English | MEDLINE | ID: mdl-27915149

ABSTRACT

Intestinal calcium absorption plays a key role in the maintenance of calcium homeostasis and may either occur by paracellular or transcellular mechanisms. The horse has some unique peculiarities in calcium homeostasis compared to other species including a high absorptive capacity for calcium in the intestine, high plasma calcium concentrations, high renal excretion, and low plasma concentrations of vitamin D metabolites. So far, knowledge about the underlying mechanisms and the regulation of intestinal calcium absorption is still limited concerning this species. Several studies have documented that intestinal calcium transport in horses is not as dependent on vitamin D as in other species. However, published data on other potential regulatory mechanisms are still lacking. In the present study, paracellular and transcellular transport mechanisms for intestinal calcium transport along the intestinal axis were identified in horses using the Ussing chamber technique. Furthermore, the expression of respective transport proteins including transient receptor potential vanilloid member 6, calbindin-D9k and calcium ATPase type 1 in line with the determined calcium flux rates was documented. In respect to regulation of transepithelial calcium transport, novel regulatory proteins for maintaining calcium homeostasis such as B-box and SPRY-domain containing protein and calmodulin were investigated for the first time in equine intestinal tissues in this study. This provides the basis for a new approach for a better understanding of equine calcium homeostasis regulation.


Subject(s)
Calcium/metabolism , Intestine, Large/metabolism , Intestine, Small/metabolism , Animals , Female , Horses , Ion Transport , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...