Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(15): 7463-7479, 2023.
Article in English | MEDLINE | ID: mdl-36120936

ABSTRACT

Characterized as a neglected disease, Chagas disease is an infection that, in the current scenario, affects about 8 million people per year, with a higher incidence in underdeveloped countries, Chagas is responsible for physiological disabilities that result in impacts that are slightly reflected in world socioeconomic stability. Although treatments are based on drugs such as Benznidazole, the pathology lacks a continuous treatment method with low toxicological incidence. The present study estimates the anti-chagasic activity of the synthetic chalcone CPN2F based on the alignment between in vitro tests and structural classification in silico studies, molecular docking and ADMET studies. The in vitro tests showed a reduction in the protozoan metabolism in host cells (LLC-MK2). At the same time, the molecular docking models evaluate this growth inhibition through the synergistic effect associated with Benznida- zole against validated therapeutic target key stages (Cruzaine TcGAPDH and Trypanothione reductase) of the Trypanosoma cruzi development cycle. The in silico prediction results reveal an alignment between pharmacokinetic attributes, such as renal absorption and release, which allow the preparation of CPN2F as an antichagasic drug with a low incidence of organic toxicity.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 40(22): 12302-12315, 2022.
Article in English | MEDLINE | ID: mdl-34436980

ABSTRACT

Chagas disease infects approximately seven million people worldwide. Benznidazole is effective only in the acute phase of the disease, with an average cure rate of 80% between acute and recent cases. Therefore, there is an urgent need to find new bioactive substances that can be effective against parasites without causing so many complications to the host. In this study, the triterpene 3ß-6ß-16ß-trihydroxilup-20 (29)-ene (CLF-1) was isolated from Combretum leprosum, and its molecular structure was determined by NMR and infrared spectroscopy. The CLF-1 was also evaluated in vitro and in silico as potential trypanocidal agent against epimastigote and trypomastigote forms of Trypanosoma cruzi (Y strain). The CLF-1 demonstrated good results highlighted by lower IC50 (76.0 ± 8.72 µM, 75.1 ± 11.0 µM, and 70.3 ± 45.4 µM) for epimastigotes at 24, 48 and 72 h, and LC50 (71.6 ± 11.6 µM) for trypomastigotes forms. The molecular docking study shows that the CLF-1 was able to interact with important TcGAPDH residues, suggesting that this natural compound may preferentially exert its effect by compromising the glycolytic pathway in T. cruzi. The ADMET study together with the MTT results indicated that the CLF-1 is well-absorbed in the intestine and has low toxicity. Thus, this work adds new evidence that CLF-1 can potentially be used as a candidate for the development of new options for the treatment of Chagas disease.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chagas Disease , Combretum , Triterpenes , Trypanocidal Agents , Trypanosoma cruzi , Humans , Plant Extracts/chemistry , Combretum/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Molecular Docking Simulation , Chagas Disease/drug therapy , Trypanocidal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...