Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 635: 122739, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36801363

ABSTRACT

Antimicrobial resistance (AMR) is a global health issue, which needs to be tackled without further delay. The World Health Organization(WHO) has classified three gram-negative bacteria, Pseudomonas aeruginosa, Klebsiella pneumonia and Acinetobacter baumannii, as the principal responsible for AMR, mainly causing difficult to treat nosocomial lung and wound infections. In this regard, the need for colistin and amikacin, the re-emerged antibiotics of choice for resistant gram-negative infections, will be examined as well as their associated toxicity. Thus, current but ineffective clinical strategies designed to prevent toxicity related to colistin and amikacin will be reported, highlighting the importance of lipid-based drug delivery systems (LBDDSs), such as liposomes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), as efficient delivery strategies for reducing antibiotic toxicity. This review reveals that colistin- and amikacin-NLCs are promising carriers with greater potential than liposomes and SLNs to safely tackle AMR, especially for lung and wound infections.


Subject(s)
Acinetobacter baumannii , Pneumonia, Bacterial , Wound Infection , Humans , Amikacin/pharmacology , Colistin/pharmacology , Liposomes/pharmacology , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pneumonia, Bacterial/drug therapy , Pseudomonas aeruginosa , Drug Delivery Systems , Lung , Wound Infection/drug therapy , Microbial Sensitivity Tests
2.
Eur J Pharm Biopharm ; 172: 31-40, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35074553

ABSTRACT

The ability of mesenchymal stromal cells (MSCs) to release a plethora of immunomodulatory factors makes them valuable candidates to overcome inflammatory bowel diseases (IBD). However, this cell therapy approach is still limited by major issues derived from nude MSC-administration, including a rapid loss of their immunomodulatory phenotype that impairs factor secretion, low persistence and impossibility to retrieve the cells in case of adverse effects. Here, we designed a licensing hydrogel system to address these limitations and thus, obtain a continuous delivery of bioactive factors. IFNγ-loaded heparin-coated beads were included in injectable in situ crosslinking alginate hydrogels, providing a 3D microenvironment that ensured continuous inflammatory licensing, cell persistence and implant retrievability. Licensing-hydrogel encapsulated human MSCs (hMSCs) were subcutaneously xenotransplanted in an acute mouse model of ulcerative colitis. Results showed that encapsulated hMSCs exerted a delocalized systemic protection, not presenting significant differences to healthy mice in the disease activity index, colon weight/length ratio and histological score. At day 7, cells were easily retrieved and ex vivo assays showed fully viable hMSCs that retained an immunomodulatory phenotype, as they continued secreting factors including PGE2 and Gal-9. Our data demonstrate the capacity of licensing hydrogel-encapsulated hMSCs to limit the in vivo progression of IBD.


Subject(s)
Colitis, Ulcerative , Mesenchymal Stem Cells , Animals , Cells, Cultured , Hydrogels , Immunomodulation , Mice , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...