Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Infect ; 24(6-7): 104975, 2022 09.
Article in English | MEDLINE | ID: mdl-35381358

ABSTRACT

The genus Paracoccidioides comprises the species complex causing paracoccidioidomycoses (PCM). These fungi are a serious public health problem due to the long-term drug therapy, follow-up treatment, and frequent sequelae generated by the infection, such as pulmonary fibrosis. In this sense, the objective of this work was to generate bioluminescent reporter strains of Paracoccidioides spp. harboring a thermostable, red-shifted luciferase gene under the control of different constitutive promoters. The strains were generated by the integration of a species-specific codon-optimized luciferase gene upon actin or enolase promoter's control. The insertion of the constructs in Paracoccidioides brasiliensis and Paracoccidioides lutzii yeast cells were performed through Agrobacterium tumefaciens-mediated transformation. The results demonstrated the presence of several transformants harboring the luciferase gene. These transformants were further confirmed by the expression of luciferase and by the presence of the hygromycin resistance gene. Moreover, the luciferase activity could be detected in in vitro bioluminescence assays and in vivo models of infection. In general, this work presents the methodology for the construction of bioluminescent strains of Paracoccidioides spp., highlighting potential promoters and proposing an in vivo model, in which those strains could be used for the systemic study of PCM.


Subject(s)
Paracoccidioides , Paracoccidioidomycosis , Actins , Paracoccidioides/genetics , Paracoccidioidomycosis/microbiology , Phosphopyruvate Hydratase
2.
Microb Pathog ; 154: 104864, 2021 May.
Article in English | MEDLINE | ID: mdl-33771629

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic fungal disease caused by Paracoccidioides spp., whose clinical outcome depends on immune response. Interleukin 32 (IL-32) is a cytokine present in inflammatory and infectious diseases, including bacterial, virus and protozoan infections. Its role in fungal disease remains unclear. The axis IL-15, IL-32 and vitamin D leads to microbicidal capacity against intracellular pathogens. Thus, the aims of this study were to investigate the production of IL-32 during Paracoccidioides spp. infection and whether this cytokine and IL-15 can increase P. brasiliensis control in a vitamin D dependent manner. IL-32 was highly detected in oral lesions from patients with PCM. In addition, high production of this cytokine was intracellularly detected in peripheral blood mononuclear cells (PBMCs) from healthy donors after exposure to particulated P. brasiliensis antigens (PbAg). The IL-32γ isoform was predominantly expressed, but there was mRNA alternative splicing for IL-32α isoform. The induction of IL-32 was dependent on Dectin-1 receptor. Infection of PBMCs with P. brasiliensis yeasts did not significantly induce IL-32 production even after activation with exogenous IFN-γ or IL-15 treatments. Although IL-15 was a potent inducer of IL-32 production, treatment with this cytokine did not increase the fungal control unless vitamin D was present in high levels. In this case, both IL-15 and IL-32 increased fungicidal activity of PBMCs. Together, data showed that IL-32 is present in lesions of PCM, PbAg induces IL-32, and the axis of IL-15/IL-32/vitamin D can contribute to control fungal infection. The data suggest that exposure to molecules from P. brasiliensis, as ß-glucans, is needed to induce IL-32 production since only heat-killed and sonicated P. brasiliensis yeasts were able to increase IL-32, which was blocked by anti-Dectin-1 antibodies. This is the first description about IL-15/IL-32/vitamin D pathway role in P. brasiliensis infection.


Subject(s)
Paracoccidioides , Paracoccidioidomycosis , Humans , Interleukin-15 , Interleukins , Leukocytes, Mononuclear , Vitamin D
3.
J Fungi (Basel) ; 6(4)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238437

ABSTRACT

BACKGROUND: Systemic mycosis is a cause of death of immunocompromised subjects. The treatment directed to evade fungal pathogens shows severe limitations, such as time of drug exposure and side effects. The paracoccidioidomycosis (PCM) treatment depends on the severity of the infection and may last from months to years. METHODS: To analyze the main interactions of Paracoccidioides lutzii isocitrate lyase (ICL) regarding the energetic metabolism through affinity chromatography, we performed blue native PAGE and co-immunoprecipitation to identify ICL interactions. We also performed in silico analysis by homology, docking, hot-spot prediction and contact preference analysis to identify the conformation of ICL complexes. RESULTS: ICL interacted with 18 proteins in mycelium, 19 in mycelium-to-yeast transition, and 70 in yeast cells. Thirty complexes were predicted through docking and contact preference analysis. ICL has seven main regions of interaction with protein partners. CONCLUSIONS: ICL seems to interfere with energetic metabolism of P. lutzii, regulating aerobic and anaerobic metabolism as it interacts with proteins from glycolysis, gluconeogenesis, TCA and methylcitrate cycles, mainly through seven hot-spot residues.

4.
Fungal Biol ; 124(9): 766-780, 2020 09.
Article in English | MEDLINE | ID: mdl-32883428

ABSTRACT

Fungi of the genus Paracoccidioides are the etiological agents of Paracoccidioidomycosis (PCM), the most prevalent mycosis in Latin America. Paracoccidioidomycosis infection is acquired by inhalation of Paracoccidioides conidia, which have first contact with the lungs and can subsequently spread to other organs/tissues. Until now, there have been no proteomic studies focusing on this infectious particle of Paracoccidioides. In order to identify the Paracoccidioides lutzii conidia proteome, conidia were produced and purified. Proteins were characterized by use of the nanoUPLC-MSE approach. The strategy allowed us to identify a total of 242 proteins in P. lutzii conidia. In the conidia proteome, proteins were classified in functional categories such as protein synthesis, energy production, metabolism, cellular defense/virulence processes, as well as other processes that can be important for conidia survival. Through this analysis, a pool of ribosomal proteins was identified, which may be important for the initial processes of dimorphic transition. In addition, molecules related to energetic and metabolic processes were identified, suggesting a possible basal metabolism during this form of resistance of the fungus. In addition, adhesins and virulence factors were identified in the P. lutzii conidia proteome. Our results demonstrate the potential role that these molecules can play during early cell-host interaction processes, as well as the way in which these molecules are involved in environmental survival during this form of propagation.


Subject(s)
Paracoccidioides , Proteome , Spores, Fungal , Paracoccidioides/metabolism , Spores, Fungal/metabolism
5.
Microb Pathog ; 149: 104281, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32585293

ABSTRACT

Paracoccidioides complex is a genus that comprises pathogenic fungi which are responsible by systemic disease Paracoccidioidomycosis. In host tissues, pathogenic fungi need to acquire nutrients in order to survive, making the uptake of nitrogen essential for their establishment and dissemination. Nitrogen utilization is employed by the alleviation of Nitrogen Catabolite Repression (NCR) which ensures the use of non-preferential or alternative nitrogen sources when preferential sources are not available. NCR is controlled by GATA transcription factors which act through GATA binding sites on promoter regions in NCR-sensitive genes. This process is responsible for encoding proteins involved with the scavenge, uptake and catabolism of a wide variety of non-preferential nitrogen sources. In this work, we predict the existence of AreA GATA transcription factor and feature the zinc finger domain by three-dimensional structure in Paracoccidioides. Furthermore, we demonstrate the putative genes involved with NCR response by means of in silico analysis. The gene expression profile under NCR conditions was evaluated. Demonstrating that P. lutzii supported transcriptional regulation and alleviated NCR in non-preferential nitrogen-dependent medium. The elucidation of NCR in members of Paracoccidioides complex will provide new knowledge about survival, dissemination and virulence for these pathogens with regard to nitrogen-scavenging strategies in the interactions of host-pathogens.


Subject(s)
Catabolite Repression , Paracoccidioides , Gene Expression Regulation, Fungal , Nitrogen/metabolism , Paracoccidioides/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Fungal Biol ; 122(6): 526-537, 2018 06.
Article in English | MEDLINE | ID: mdl-29801797

ABSTRACT

Black fungi comprise a diverse group of melanized microorganisms, many of which are able to infect humans. One of the recognized diseases that arise with black fungi infection is chromoblastomycosis, a neglected implantation mycosis. Considering their ecology, black fungi may face conditions with distinct metal availability. Zinc and copper are essential transition metals, which become toxic in excess. During the interaction with host, fungi may face either metal deprivation or poisoning. Here we report an in silico analysis of four black fungi genomes concerning zinc and copper homeostasis. Overall, these organisms share apparatus of metal uptake, storage and detoxification with other pathogenic and non-pathogenic fungi. Genes coding plasma membrane and organelle transporters, as well as metal binding proteins were identified. Althought putatives zinc and copper responsive transcription factors have been found in the analyzed genomes, remarkable structural differences were perceived when compared to the already characterized regulators. Black fungi may harbor unique features concerning the regulation of zinc and copper homeostasis, which is probably a result of the niches they can inhabit. The data provided here add knowlegde to a still unexplored aspect of black fungi biology that may be useful in the understanding of their pathogenicity.


Subject(s)
Ascomycota/metabolism , Chromoblastomycosis/microbiology , Copper/metabolism , Zinc/metabolism , Ascomycota/classification , Ascomycota/genetics , Ascomycota/pathogenicity , Homeostasis , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
7.
Fungal Biol ; 122(6): 505-513, 2018 06.
Article in English | MEDLINE | ID: mdl-29801795

ABSTRACT

Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection.


Subject(s)
Fungal Proteins/metabolism , Host-Pathogen Interactions , Paracoccidioides/metabolism , Paracoccidioides/pathogenicity , Paracoccidioidomycosis/microbiology , Virulence Factors/metabolism , Animals , Humans , Mice , Nitrosative Stress , Oxidative Stress , Proteomics/methods , Spores, Fungal/metabolism
8.
Microbes Infect ; 11(10-11): 895-903, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19500685

ABSTRACT

Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), a systemic mycosis presenting clinical manifestations ranging from mild to severe forms. A P. brasiliensis cDNA expression library was produced and screened with pooled sera from PCM patients adsorbed against antigens derived from in vitro-grown P. brasiliensis yeast cells. Sequencing DNA inserts from clones reactive with PCM patients sera indicated 35 open reading frames presenting homology to genes involved in metabolic pathways, transport, among other predicted functions. The complete cDNAs encoding aromatic-l-amino-acid decarboxylase (Pbddc), lumazine synthase (Pbls) and a homologue of the high affinity copper transporter (Pbctr3) were obtained. Recombinant proteins PbDDC and PbLS were obtained; a peptide was synthesized for PbCTR3. The proteins and the synthetic peptide were recognized by sera of patients with confirmed PCM and not by sera of healthy patients. Using the in vivo-induced antigen technology (IVIAT), we identified immunogenic proteins expressed at high levels during infection. Quantitative real time RT-PCR demonstrated high transcript levels of Pbddc, Pbls and Pbctr3 in yeast cells infecting macrophages. Transcripts in yeast cells derived from spleen and liver of infected mice were also measured by qRT-PCR. Our results suggest a putative role for the immunogenic proteins in the infectious process of P. brasiliensis.


Subject(s)
Antigens, Fungal/isolation & purification , Fungal Proteins/isolation & purification , Gene Expression Regulation, Fungal , Paracoccidioides/physiology , Animals , Antigens, Fungal/genetics , Antigens, Fungal/immunology , Female , Fungal Proteins/genetics , Fungal Proteins/immunology , Gene Library , Humans , Macrophages/microbiology , Mice , Mice, Inbred BALB C
9.
Microbes Infect ; 8(12-13): 2686-97, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16962356

ABSTRACT

Paracoccidioides brasiliensis causes infection by the host inhalation of airborne propagules of the mycelia phase of the fungus. These particles reach the lungs, and disseminate to virtually all organs. Here we describe the identification of differentially expressed genes in studies of host-fungus interaction. We analyzed two cDNA populations of P. brasiliensis, one obtained from infected animals and the other an admixture of fungus and human blood thus mimicking the hematologic events of the fungal dissemination. Our analysis identified transcripts differentially expressed. Genes related to iron acquisition, melanin synthesis and cell defense were specially upregulated in the mouse model of infection. The upregulated transcripts of yeast cells during incubation with human blood were those predominantly related to cell wall remodeling/synthesis. The expression pattern of genes was independently confirmed in host conditions, revealing their potential role in the infection process. This work can facilitate functional studies of novel regulated genes that may be important for the survival and growth strategies of P. brasiliensis in humans.


Subject(s)
Gene Expression Regulation, Fungal , Paracoccidioides/genetics , Paracoccidioides/pathogenicity , Paracoccidioidomycosis/microbiology , Adaptation, Physiological/genetics , Animals , Blotting, Northern , DNA, Complementary , Expressed Sequence Tags , Fungemia/microbiology , Gene Expression Profiling , Gene Library , Genes, Fungal , Humans , Mice , Mice, Inbred BALB C , Nucleic Acid Hybridization , Paracoccidioides/physiology , RNA, Fungal/biosynthesis , RNA, Fungal/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...