Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209067

ABSTRACT

Boerhavia diffusa L. Nyctanginaceae (B. diffusa) is a medicinal herb commonly considered as a weed. The exploration of phytochemicals in different parts of B. diffusa with different solvents will create awareness, along with the suitable solvent and method for extraction of pharmaceutical compounds. Hence, the present study focuses on phytochemical analysis of B. diffusa leaves, stems, and roots in various solvents with hot and cold extraction. The decoctions performed well in most of the qualitative and quantitative tests, along with the DPPH assay. The aqueous extract showed a good result in the FRAP assay and ABTS assay. In the antimicrobial test, the B. diffusa root ethanol extract inhibited the growth of Pseudomonas aeruginosa and Staphylococcus aureus with zones of inhibition of about 8 mm and 20 mm at 200 µg concentration, respectively. Using a molecular docking approach, the top four ranked molecules from the crude extract of B. diffusa profiled from GC-MS spectroscopy in terms of growth inhibition of the pathogenic bacterium P. aeruginosa were selected; among them, 2-(1,2 dihydroxyethyl)-5-[[2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydrochromen-6-yl]oxy]oxolane-3,4-diol exhibited the minimum binding score, revealing high affinity in complex. B. diffusa is highly nutritious, and the maceration and decoction extracts were similar except for the chloroform extract that was found to be weak.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Nutrients/analysis , Nyctaginaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Dose-Response Relationship, Drug , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
2.
J Agric Food Chem ; 63(27): 6231-40, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26072674

ABSTRACT

We used the next-generation Illumina/Solexa HiSeq2000 platform on RNA analysis to investigate the transcriptome of Astragalus membranaceus hairy roots in response to 100 µM methyl jasmonate (MeJA). In total, 77,758,230 clean reads were assembled into 48,636 transcripts (average length of 1398 bp), which were clustered into 23,658 loci (genes). Of these, 19,940 genes were annotated by BLASTx searches. In addition, DESeq analysis showed that 2127 genes were up-regulated, while 1247 genes were down-regulated by MeJA. Seventeen novel astragaloside (AST) biosynthetic genes and seven novel calycosin and calycosin-7-O-ß-D-glucoside (CG) biosynthetic genes were isolated. The accumulation of ASTs, calycosin, and CG increased significantly in MeJA-treated hairy roots compared with control hairy roots. Our findings will provide a valuable resource for molecular characterization of AST, calycosin, and CG biosynthetic pathways and may lead to new approaches to maximize their production and biomass productivity in the hairy roots of A. membranaceus.


Subject(s)
Acetates/pharmacology , Astragalus propinquus/drug effects , Astragalus propinquus/genetics , Cyclopentanes/pharmacology , Glucosides/biosynthesis , Isoflavones/biosynthesis , Oxylipins/pharmacology , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Roots/growth & development , Astragalus propinquus/growth & development , Astragalus propinquus/metabolism , Cells, Cultured , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Transcription, Genetic/drug effects
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-820364

ABSTRACT

OBJECTIVE@#To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline (TG) for reducing the H2O2 induced toxicity in H9c2 cells.@*METHODS@#Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit. RNA extraction and cDNA synthesized according to the kit manufacture protocol. Apoptosis was measured by the Flowcytometry, general PCR and qPCR.@*RESULTS@#It was found that the TG significantly rescued the morphology of the H9c2 cells. Treatment of cells with TG attenuated H2O2 induced cell deaths and improved the antioxidant activity. In addition, TG regulated the apoptotic gene caspase-3, caspase-9 and anti-apoptotic gene Bcl-2, Bcl-XL during H2O2 induced oxidative stress in H9c2 cells. These results were comparable with quercetin treatment. For evident, flow cytometer results also confirmed the TG significantly reduced the H2O2 induced necrosis and apoptosis in H9c2 cells. However, further increment of TG concentration against H2O2 could induce the necrosis and apoptosis along with H2O2.@*CONCLUSIONS@#It is suggested that less than 125 μ M of TG could protect the cells from H2O2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression. Therefore, we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-951563

ABSTRACT

Objective: To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline (TG) for reducing the H2O2 induced toxicity in H9c2 cells. Methods: Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit. RNA extraction and cDNA synthesized according to the kit manufacture protocol. Apoptosis was measured by the Flowcytometry, general PCR and qPCR. Results: It was found that the TG significantly rescued the morphology of the H9c2 cells. Treatment of cells with TG attenuated H2O2 induced cell deaths and improved the antioxidant activity. In addition, TG regulated the apoptotic gene caspase-3, caspase-9 and anti-apoptotic gene Bcl-2, Bcl-XL during H2O2 induced oxidative stress in H9c2 cells. These results were comparable with quercetin treatment. For evident, flow cytometer results also confirmed the TG significantly reduced the H2O2 induced necrosis and apoptosis in H9c2 cells. However, further increment of TG concentration against H2O2 could induce the necrosis and apoptosis along with H2O2. Conclusions: It is suggested that less than 125 μ M of TG could protect the cells from H2O2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression. Therefore, we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.

SELECTION OF CITATIONS
SEARCH DETAIL
...