Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 281(10): 1296-1312, 2020 10.
Article in English | MEDLINE | ID: mdl-32804421

ABSTRACT

Sea slugs are interesting models to study post-copulatory sexual selection in simultaneous hermaphrodites due to the enormous variation of their reproductive systems. However, the knowledge of the functional morphology of their reproductive system is limited to few species, and it is rarely discussed in the context of sexual selection theory. In this study, we investigated the functional morphology of the sperm-containing chambers (i.e., ampulla, seminal receptacle, and bursa copulatrix) of the reproductive system of Okenia polycerelloides (Ortea & Bouchet, 1983), based on light, confocal, and electron microscopy. Although the morphology of the ampulla is similar to other species, indicating that it is a site for autosperm storage, we found some sperm facing the ampullar epithelium, a feature commonly regarded as characteristic of the seminal receptacle of sea slugs. The seminal receptacle of O. polycerelloides showed secretory activity and contained sperm with distribution and orientation suggestive of stratification of allosperm from distinct mating events, a feature that would affect sperm competition. The bursa copulatrix had epithelial cells with secretory and absorptive characteristics, and contained degraded sperm and yolk granules within its lumen. Comparative analyses of the contents of each organ demonstrated that sperm digestion occurs in the bursa copulatrix and affects sperm heads first, changing their morphology from slender and curved to shorter and ellipsoid before complete lysis. Although digestion and absorption of surplus sperm are currently the main hypothesized functions for the bursa copulatrix, its role in cryptic female choice should not be ruled out. The close structural connection between the seminal receptacle and bursa copulatrix, as well as their muscular walls, would enable control over the fate of the sperm received in each mating event, that is, storage or digestion.


Subject(s)
Gastropoda/anatomy & histology , Mating Preference, Animal/physiology , Spermatozoa/cytology , Animals , Female , Gastropoda/cytology , Gastropoda/ultrastructure , Genitalia/anatomy & histology , Genitalia/ultrastructure , Male , Reproduction , Spermatozoa/ultrastructure
2.
Mol Phylogenet Evol ; 147: 106801, 2020 06.
Article in English | MEDLINE | ID: mdl-32217167

ABSTRACT

The wide disparity in adult body size observed both within and among animal taxa has long attracted widespread interest, with several general rules having been proposed to explain trends in body size evolution. Adult body size disparity among the cephalopod mollusks is remarkable, with adult body sizes ranging from a few centimeters to several meters. Some of the smallest cephalopods are found within Pickfordiateuthis, a group comprising three described species of squid found in the western Atlantic and tropical eastern Pacific. Pickfordiateuthis pulchella, the type species of the genus, was initially proposed to be closely related to the loliginid squids (Loliginidae), with subsequent descriptions of additional species supporting a placement within Loliginidae. Pickfordiateuthis is remarkable in that all species reach sexual maturity at about one-fifth to one-tenth the size seen in most loliginid species. To date, no phylogenetic analyses have included representatives of Pickfordiateuthis. To infer the phylogenetic position of Pickfordiateuthis and explore its implications for body size evolution, we collected specimens of Pickfordiateuthis pulchella from Brazilian waters and sequenced regions of two loci-the mitochondrial large ribosomal subunit (rrnL a.k.a. 16S) gene and the nuclear gene rhodopsin. Maximum likelihood and Bayesian analyses of these sequences support a placement of Pickfordiateuthis pulchella as sister to a clade comprising the Western Hemisphere loliginid genera Doryteuthis and Lolliguncula. Analyses of body size evolution within Loliginidae suggest that a shift to a smaller body size optimum occurred along the lineage leading to P. pulchella, with some evidence of shifts toward larger sizes in the ancestors of Loligo and Sepioteuthis; these inferences seem to be robust to phylogenetic uncertainty and incomplete taxon sampling. The small size and juvenile-like morphological traits seen in adult Pickfordiateuthis (e.g., sepiolid-like fins and biserial sucker arrangement in the tentacles) may be due to paedomorphosis.


Subject(s)
Decapodiformes/classification , Phylogeny , Animals , Base Sequence , Bayes Theorem , Brazil , Computer Simulation
4.
J Morphol ; 279(6): 841-856, 2018 06.
Article in English | MEDLINE | ID: mdl-29570829

ABSTRACT

Cubozoans (box jellyfish) are gonochoristic cnidarians with distinct reproductive strategies. This comparative histological study examines the gonad organization of Alatina alata and Copula sivickisi, two box jellyfish species that exhibit different modes of internal fertilization. A. alata reproduces via spermcasting aggregations while C. sivickisi reproduces via copulation; in both cases, internal fertilization occurs in the gastrovascular cavity. Herein, we provide the first histological description of subgastric sacs-structures unique to C. sivickisi. Although previously thought to function as sperm storage sacs, our findings reveal that subgastric sacs are nematocyst nests lacking sperm entirely. Conversely, we discovered that velarial spots in C. sivickisi females correspond to actual sperm storage structures. Histological examination of cubozoan sperm packages revealed that while sperm packages from both species have motile flagella, A. alata males produce nonencapsulated sperm bundles (i.e., "spermatozeugmata"), and C. sivickisi males produce encapsulated packages (i.e., "spermatophores"). Our findings corroborate the presence of several types of nematocysts in C. sivickisi embryo strands and spermatophores, and indicate their provenance to be both female and male gonads respectively, as well as subgastric sacs (i.e., nematocyst nests). In contrast to our findings of velarial spots as sperm storages structures in C. sivickisi females, and of nematocysts in the gonads of both sexes, we report that A. alata medusae lack both sperm storage structures and gonadal nematocysts. Finally, we discuss our findings on reproductive morphology of C. sivickisi and A. alata in light of the respective reproductive behavior of these two cubozoan species.


Subject(s)
Cubozoa/anatomy & histology , Animals , Cubozoa/physiology , Female , Male , Reproduction/physiology
5.
PeerJ ; 5: e2964, 2017.
Article in English | MEDLINE | ID: mdl-28224050

ABSTRACT

The exoskeleton is an important source of characters for the taxonomy of Hydroidolina. It originates as epidermal secretions and, among other functions, protects the coenosarc of the polypoid stage. However, comparative studies on the exoskeletal tissue origin, development, chemical, and structural characteristics, as well as its evolution and homology, are few and fragmented. This study compares the structure and composition of the exoskeleton and underlying coenosarc in members of "Anthoathecata" and some Leptothecata, but does so mainly in bougainvilliid polyps histological analyses. We also studied the development of the exoskeleton under experimental conditions. We identified three types of glandular epidermal cells related to the origin of the exoskeleton and the secretion of its polysaccharides component. The exoskeleton of the species studied is either bilayered (perisarc and exosarc, especially in bougainvilliids) or corneous (perisarc). The exoskeleton varies in chemical composition, structural rigidity, thickness, extension, and coverage in the different regions of the colony. In bilayered exoskeletons, the exosarc is produced first and appears to be a key step in the formation of the rigid exoskeleton. The exoskeleton contains anchoring structures such as desmocytes and "perisarc extensions."

6.
Front Zool ; 12: 34, 2015.
Article in English | MEDLINE | ID: mdl-26635889

ABSTRACT

BACKGROUND: Myogenesis is currently investigated in a number of invertebrate taxa using combined techniques, including fluorescence labeling, confocal microscopy, and 3D imaging, in order to understand anatomical and functional issues and to contribute to evolutionary questions. Although developmental studies on the gross morphology of bivalves have been extensively pursued, organogenesis including muscle development has been scarcely investigated so far. RESULTS: The present study describes in detail myogenesis in the scallop Nodipecten nodosus (Linnaeus, 1758) during larval and postmetamorphic stages by means of light, electron, and confocal microscopy. The veliger muscle system consists of an anterior adductor muscle, as well as four branched pairs of striated velum retractors and two pairs of striated ventral larval retractors. The pediveliger stage exhibits a considerably elaborated musculature comprising the velum retractors, the future adult foot retractor, mantle (pallial) muscles, and the anterior and posterior adductors, both composed of smooth and striated portions. During metamorphosis, all larval retractors together with the anterior adductor degenerate, resulting in the adult monomyarian condition, whereby the posterior adductor retains both myofiber types. Three muscle groups, i.e., the posterior adductor, foot retractor, and pallial muscles, have their origin prior to metamorphosis and are subsequently remodeled. CONCLUSIONS: Our data suggest a dimyarian condition (i.e., the presence of an anterior and a posterior adductor in the adult) as the basal condition for pectinids. Comparative analysis of myogenesis across Bivalvia strongly argues for ontogenetic and evolutionary independence of larval retractors from the adult musculature, as well as a complex set of larval retractor muscles in the last common bivalve ancestor.

7.
BMC Dev Biol ; 15: 22, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017922

ABSTRACT

BACKGROUND: Despite extensive knowledge on bivalve anatomy and development, the formation and differentiation of the mantle margin and its associated organs remain largely unclear. Bivalves from the family Pectinidae (scallops) are particularly promising to cast some light on these issues, because they exhibit a complex mantle margin and their developmental stages are easily obtained from scallop farms. We investigated the mantle margin of the scallop Nodipecten nodosus (L. 1758) during larval and postmetamorphic development. METHODS: A thorough analysis of the mantle margin development in Nodipecten nodosus, from veliger larvae to mature adults, was conducted by means of integrative microscopy techniques, i.e., light, electron, and confocal microscopy. RESULTS: Initially unfolded, the pallial margin is divided into distal and proximal regions by the periostracum-forming zone. The emergence of the pallial musculature and its neural innervation are crucial steps during bivalve larval development. By the late pediveliger stage, the margin becomes folded, resulting in a bilobed condition (i.e., outer and inner folds), a periostracal groove, and the development of different types of cilia. After metamorphosis, a second outgrowth process is responsible for emergence of the middle mantle fold from the outer surface of the inner fold. Once the three-folded condition is established, the general adult features are rapidly formed. CONCLUSIONS: Our data show that the middle mantle fold forms from the outer surface of the inner fold after metamorphosis and that the initial unfolded mantle margin may represent a common condition among bivalves. The first outgrowth process, which gives rise to the outer and inner folds, and the emergence of the pallial musculature and innervation occur during larval stages, highlighting the importance of the larval period for mantle margin morphogenesis in Bivalvia.


Subject(s)
Mollusca/growth & development , Animals , Larva/growth & development , Morphogenesis
8.
J Morphol ; 273(3): 248-78, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21956428

ABSTRACT

During copulation, spermatophores produced by male coleoid cephalopods undergo the spermatophoric reaction, a complex process of evagination that culminates in the attachment of the spermatangium (everted spermatophore containing the sperm mass) on the female's body. To better understand this complicated phenomenon, the present study investigated the functional morphology of the spermatophore of the squid Doryteuthis plei applying in vitro analysis of the reaction, as well as light and electron microscopy investigation of spermatangia obtained either in vitro, or naturally attached on females. Hitherto unnoticed functional features of the loliginid spermatophore require a reappraisal of some important processes involved in the spermatophoric reaction. The most striking findings concern the attachment mechanism, which is not carried out solely by cement adhesive material, as previously believed, but rather by an autonomous, complex process performed by multiple structures during the spermatophoric reaction. During evagination, the ejaculatory apparatus provides anchorage on the targeted tissue, presumably due to the minute stellate particles present in the exposed spiral filament. Consequently, the ejaculatory apparatus maintains the attachment of the tip of the evaginating spermatophore until the cement body is extruded. Subsequently, the cement body passes through a complex structural rearrangement, which leads to the injection of both its viscid contents and pointed oral region onto the targeted tissue. The inner membrane at the oral region of the cement body contains numerous stellate particles attached at its inner side; eversion of this membrane exposes these sharp structures, which presumably adhere to the tissue and augment attachment. Several naturally attached spermatangia were found with their bases implanted at the deposition sites, and the possible mechanisms of perforation are discussed based on present evidence. The function of the complex squid spermatophore and its spermatophoric reaction is revisited in light of these findings. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.


Subject(s)
Cephalopoda/physiology , Cephalopoda/ultrastructure , Animals , Copulation , Female , Male , Microscopy, Electron , Mollusca , Spermatogonia/physiology , Spermatogonia/ultrastructure , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...