Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1378512, 2024.
Article in English | MEDLINE | ID: mdl-38629078

ABSTRACT

Python for Population Genomics (PyPop) is a software package that processes genotype and allele data and performs large-scale population genetic analyses on highly polymorphic multi-locus genotype data. In particular, PyPop tests data conformity to Hardy-Weinberg equilibrium expectations, performs Ewens-Watterson tests for selection, estimates haplotype frequencies, measures linkage disequilibrium, and tests significance. Standardized means of performing these tests is key for contemporary studies of evolutionary biology and population genetics, and these tests are central to genetic studies of disease association as well. Here, we present PyPop 1.0.0, a new major release of the package, which implements new features using the more robust infrastructure of GitHub, and is distributed via the industry-standard Python Package Index. New features include implementation of the asymmetric linkage disequilibrium measures and, of particular interest to the immunogenetics research communities, support for modern nomenclature, including colon-delimited allele names, and improvements to meta-analysis features for aggregating outputs for multiple populations. Code available at: https://zenodo.org/records/10080668 and https://github.com/alexlancaster/pypop.


Subject(s)
Metagenomics , Software , Genetics, Population , Genotype , Haplotypes , Meta-Analysis as Topic
2.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585776

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune disease characterized by skin fibrosis, internal organ involvement and vascular dropout. We previously developed and phenotypically characterized an in vitro 3D skin-like tissue model of SSc, and now analyze the transcriptomic (scRNA-seq) and epigenetic (scATAC-seq) characteristics of this model at single-cell resolution. SSc 3D skin-like tissues were fabricated using autologous fibroblasts, macrophages, and plasma from SSc patients or healthy control (HC) donors. SSc tissues displayed increased dermal thickness and contractility, as well as increased α-SMA staining. Single-cell transcriptomic and epigenomic analyses identified keratinocytes, macrophages, and five populations of fibroblasts (labeled FB1 - 5). Notably, FB1 APOE-expressing fibroblasts were 12-fold enriched in SSc tissues and were characterized by high EGR1 motif accessibility. Pseudotime analysis suggests that FB1 fibroblasts differentiate from a TGF-ß1-responsive fibroblast population and ligand-receptor analysis indicates that the FB1 fibroblasts are active in macrophage crosstalk via soluble ligands including FGF2 and APP. These findings provide characterization of the 3D skin-like model at single cell resolution and establish that it recapitulates subsets of fibroblasts and macrophage phenotypes observed in skin biopsies.

4.
Article in English | MEDLINE | ID: mdl-35573871

ABSTRACT

DNA methylation-based copy number variation (CNV) calling software offers the advantages of providing both genetic (copy-number) and epigenetic (methylation) state information from a single genomic library. This method is advantageous when looking at large-scale chromosomal rearrangements such as the loss of the short arm of chromosome 3 (3p) in renal cell carcinoma and the codeletion of the short arm of chromosome 1 and the long arm of chromosome 19 (1p/19q) commonly seen in histologically defined oligodendrogliomas. Herein, we present MethylMasteR: a software framework that facilitates the standardization and customization of methylation-based CNV calling algorithms in a single R package deployed using the Docker software framework. This framework allows for the easy comparison of the performance and the large-scale CNV event identification capability of four common methylation-based CNV callers. Additionally, we incorporated our custom routine, which was among the best performing routines. We employed the Affymetrix 6.0 SNP Chip results as a gold standard against which to compare large-scale event recall. As there are disparities within the software calling algorithms themselves, no single software is likely to perform best for all samples and all combinations of parameters. The employment of a standardized software framework via creating a Docker image and its subsequent deployment as a Docker container allows researchers to efficiently compare algorithms and lends itself to the development of modified workflows such as the custom workflow we have developed. Researchers can now use the MethylMasteR software for their methylation-based CNV calling needs and follow our software deployment framework. We will continue to refine our methodology in the future with a specific focus on identifying large-scale chromosomal rearrangements in cancer methylation data.

5.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613941

ABSTRACT

Cerebral malaria (CM), a fatal complication of Plasmodium infection that affects children, especially under the age of five, in sub-Saharan Africa and adults in South-East Asia, results from incompletely understood pathogenetic mechanisms. Increased release of circulating miRNA, proteins, lipids and extracellular vesicles has been found in CM patients and experimental mouse models. We compared lipid profiles derived from the plasma of CBA mice infected with Plasmodium berghei ANKA (PbA), which causes CM, to those from Plasmodium yoelii (Py), which does not. We previously showed that platelet-free plasma (18k fractions enriched from plasma) contains a high number of extracellular vesicles (EVs). Here, we found that this fraction produced at the time of CM differed dramatically from those of non-CM mice, despite identical levels of parasitaemia. Using high-resolution liquid chromatography-mass spectrometry (LCMS), we identified over 300 lipid species within 12 lipid classes. We identified 45 and 75 lipid species, mostly including glycerolipids and phospholipids, with significantly altered concentrations in PbA-infected mice compared to Py-infected and uninfected mice, respectively. Total lysophosphatidylethanolamine (LPE) levels were significantly lower in PbA infection compared to Py infection and controls. These results suggest that experimental CM could be characterised by specific changes in the lipid composition of the 18k fraction containing circulating EVs and can be considered an appropriate model to study the role of lipids in the pathophysiology of CM.


Subject(s)
Malaria, Cerebral , Plasmodium yoelii , Mice , Animals , Lipidomics , Mice, Inbred CBA , Plasmodium berghei , Lipids , Mice, Inbred C57BL , Brain/pathology
6.
Article in English | MEDLINE | ID: mdl-34493606

ABSTRACT

BACKGROUND AND OBJECTIVES: Varicella zoster virus (VZV) antigen has been detected in temporal arteries (TAs) of individuals with giant cell arteritis (GCA), the most common systemic vasculitis in older adults. Thus, we explored the contribution of VZV to GCA pathogenesis. METHODS: Formalin-fixed, paraffin-embedded TA sections from biopsy-positive GCA participants with VZV antigen (GCA/VZV-positive; n = 20) and without (GCA/VZV-negative, n = 20) and from normal participants with VZV antigen (control/VZV-positive, n = 11) and without (control/VZV-negative, n = 20) were analyzed by targeted RNA sequencing of the whole human transcriptome (BioSpyder TempO-Seq). Ingenuity pathway analysis and R-computational program were used to identify differentially expressed genes and pathways between groups. RESULTS: Compared with control/VZV-negative TAs, GCA/VZV-negative and GCA/VZV-positive TAs were significantly enriched for human transcripts specific for pathways involved in viral infections, including viral entry, nuclear factor kappa B activation by viruses, and other pathogen-related immune activation pathways. Similarly, human gene sets supporting viral infection were found in control/VZV-positive TAs that showed no morphological signs of inflammation, suggesting that the enriched pathways were not nonspecific signatures of infiltrating immune cells. All GCA TAs and control/VZV-positive TAs showed enrichment of transcripts involved in vascular remodeling, including smooth muscle cell migration. DISCUSSION: The detection of viral and immune activation pathways in GCA TAs supports a role for virus infection in GCA pathogenesis. In addition, the detection of viral pathways in control/VZV-positive TAs, along with vascular remodeling pathways, suggests that these samples may represent early infection with progression to clinical disease, depending on host and other environmental factors.


Subject(s)
Antigens, Viral/isolation & purification , DNA, Viral/isolation & purification , Giant Cell Arteritis/virology , Herpesvirus 3, Human , Temporal Arteries/virology , Aged , Female , Formaldehyde , Gene Expression Profiling , Giant Cell Arteritis/pathology , Humans , Male , Middle Aged , Paraffin Embedding , Sequence Analysis, RNA , Temporal Arteries/pathology , Tissue Fixation
7.
Biochem Mol Biol Educ ; 49(4): 588-597, 2021 07.
Article in English | MEDLINE | ID: mdl-33939256

ABSTRACT

Next Generation Sequencing (NGS) has become an important tool in the biological sciences and has a growing number of applications across medical fields. Currently, few undergraduate programs provide training in the design and implementation of NGS applications. Here, we describe an inquiry-based laboratory exercise for a college-level molecular biology laboratory course that uses real-time MinION deep sequencing and bioinformatics to investigate characteristic genetic variants found in cancer cell-lines. The overall goal for students was to identify non-small cell lung cancer (NSCLC) cell-lines based on their unique genomic profiles. The units described in this laboratory highlight core principles in multiplex PCR primer design, real-time deep sequencing, and bioinformatics analysis for genetic variants. We found that the MinION device is an appropriate, feasible tool that provides a comprehensive, hands-on NGS experience for undergraduates. Student evaluations demonstrated increased confidence in using molecular techniques and enhanced understanding of NGS concepts. Overall, this exercise provides a pedagogical tool for incorporating NGS approaches in the teaching laboratory as way of enhancing students' comprehension of genomic sequence analysis. Further, this NGS lab module can easily be added to a variety of lab-based courses to help undergraduate students learn current DNA sequencing methods with limited effort and cost.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/genetics , Computational Biology/education , Laboratories/standards , Molecular Biology/education , Mutation , Nanopore Sequencing/methods , Students/statistics & numerical data , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , High-Throughput Nucleotide Sequencing/methods , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology
8.
Front Cell Infect Microbiol ; 11: 612656, 2021.
Article in English | MEDLINE | ID: mdl-33718266

ABSTRACT

Human herpesvirus -6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes. Viral integration can occur in several cell types, including germinal cells, resulting in individuals that harbor the viral genome in every cell of their body. The integrated genome is efficiently silenced but can sporadically reactivate resulting in various clinical symptoms. To date, the integration mechanism and the subsequent silencing of HHV-6A/B genes remains poorly understood. Here we investigate the genome-wide chromatin contacts of the integrated HHV-6A in latently-infected cells. We show that HHV-6A becomes transcriptionally silent upon infection of these cells over the course of seven days. In addition, we established an HHV-6-specific 4C-seq approach, revealing that the HHV-6A 3D interactome is associated with quiescent chromatin states in cells harboring integrated virus. Furthermore, we observed that the majority of virus chromatin interactions occur toward the distal ends of specific human chromosomes. Exploiting this finding, we established a 4C-seq method that accurately detects the chromosomal integration sites. We further implement long-read minION sequencing in the 4C-seq assay and developed a method to identify HHV-6A/B integration sites in clinical samples.


Subject(s)
Herpesvirus 6, Human , Chromatin , Chromosomes, Human , Herpesvirus 6, Human/genetics , Humans , Telomere , Virus Integration
9.
Front Microbiol ; 10: 1408, 2019.
Article in English | MEDLINE | ID: mdl-31293546

ABSTRACT

Human herpesvirus-6A (HHV-6A) and 6B (HHV-6B) are two closely related betaherpesviruses that are associated with various diseases including seizures and encephalitis. The HHV-6A/B genomes have been shown to be present in an integrated state in the telomeres of latently infected cells. In addition, integration of HHV-6A/B in germ cells has resulted in individuals harboring this inherited chromosomally integrated HHV-6A/B (iciHHV-6) in every cell of their body. Until now, the viral transcriptome and the epigenetic modifications that contribute to the silencing of the integrated virus genome remain elusive. In the current study, we used a patient-derived iciHHV-6A cell line to assess the global viral gene expression profile by RNA-seq, and the chromatin profiles by MNase-seq and ChIP-seq analyses. In addition, we investigated an in vitro generated cell line (293-HHV-6A) that expresses GFP upon the addition of agents commonly used to induce herpesvirus reactivation such as TPA. No viral gene expression including miRNAs was detected from the HHV-6A genomes, indicating that the integrated virus is transcriptionally silent. Intriguingly, upon stimulation of the 293-HHV-6A cell line with TPA, only foreign promoters in the virus genome were activated, while all HHV-6A promoters remained completely silenced. The transcriptional silencing of latent HHV-6A was further supported by MNase-seq results, which demonstrate that the latent viral genome resides in a highly condensed nucleosome-associated state. We further explored the enrichment profiles of histone modifications via ChIP-seq analysis. Our results indicated that the HHV-6 genome is modestly enriched with the repressive histone marks H3K9me3/H3K27me3 and does not possess the active histone modifications H3K27ac/H3K4me3. Overall, these results indicate that HHV-6 genomes reside in a condensed chromatin state, providing insight into the epigenetic mechanisms associated with the silencing of the integrated HHV-6A genome.

10.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30996085

ABSTRACT

The cellular insulator protein CTCF plays a role in herpes simplex virus 1 (HSV-1) latency through the establishment and regulation of chromatin boundaries. We previously found that the CTRL2 regulatory element downstream from the latency-associated transcript (LAT) enhancer was bound by CTCF during latency and underwent CTCF eviction at early times postreactivation in mice latently infected with 17syn+ virus. We also showed that CTRL2 was a functional enhancer-blocking insulator in both epithelial and neuronal cell lines. We hypothesized that CTRL2 played a direct role in silencing lytic gene expression during the establishment of HSV-1 latency. To test this hypothesis, we used a recombinant virus with a 135-bp deletion spanning only the core CTRL2 insulator domain (ΔCTRL2) in the 17syn+ background. Deletion of CTRL2 resulted in restricted viral replication in epithelial cells but not neuronal cells. Following ocular infection, mouse survival decreased in the ΔCTRL2-infected cohort, and we found a significant decrease in the number of viral genomes in mouse trigeminal ganglia (TG) infected with ΔCTRL2, indicating that the CTRL2 insulator was required for the efficient establishment of latency. Immediate early (IE) gene expression significantly increased in the number of ganglia infected with ΔCTRL2 by 31 days postinfection relative to the level with 17syn+ infection, indicating that deletion of the CTRL2 insulator disrupted the organization of chromatin domains during HSV-1 latency. Finally, chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) analyses of TG from ΔCTRL2-infected mice confirmed that the distribution of the repressive H3K27me3 (histone H3 trimethylated at K27) mark on the ΔCTRL2 recombinant genomes was altered compared to that of the wild type, indicating that the CTRL2 site modulates the repression of IE genes during latency.IMPORTANCE It is becoming increasingly clear that chromatin insulators play a key role in the transcriptional control of DNA viruses. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) utilize chromatin insulators to order protein recruitment and dictate the formation of three-dimensional DNA loops that spatially control transcription and latency. The contribution of chromatin insulators in alphaherpesvirus transcriptional control is less well understood. The work presented here begins to bridge that gap in knowledge by showing how one insulator site in HSV-1 modulates lytic gene transcription and heterochromatin deposition as the HSV-1 genome establishes latency.


Subject(s)
CCCTC-Binding Factor/metabolism , Herpesvirus 1, Human/metabolism , Heterochromatin/metabolism , Virus Latency/physiology , Animals , CCCTC-Binding Factor/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation , Disease Models, Animal , Epigenomics , Eye Infections/virology , Ganglia/virology , Gene Expression Regulation, Viral , Gene Silencing , Genome, Viral , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 4, Human/physiology , Herpesvirus 8, Human/physiology , Mice , Mice, Inbred BALB C , Mice, Knockout , Virus Activation , Virus Replication
11.
Mol Cell Proteomics ; 17(1): 160-174, 2018 01.
Article in English | MEDLINE | ID: mdl-29079721

ABSTRACT

Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP (C-TERMINALLY ENCODED PEPTIDE), two CLE (CLV3/ENDOSPERM SURROUNDING REGION RELATED) and six XAP (XYLEM SAP ASSOCIATED PEPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N- and C-terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N-terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide hormone gene expression in the root vasculature and tip. Since hairy roots can be induced on many plants, their corresponding root cultures may represent ideal source materials to efficiently identify diverse peptide hormones in vivo in a broad range of species.


Subject(s)
Medicago truncatula/physiology , Peptide Hormones/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Xylem/metabolism
12.
Radiat Prot Dosimetry ; 172(1-3): 121-126, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27412507

ABSTRACT

A new resonator for X-band in vivo EPR nail dosimetry, the dielectric-backed aperture resonator (DAR), is developed based on rectangular TE102 geometry. This novel geometry for surface spectroscopy improves at least a factor of 20 compared to a traditional non-backed aperture resonator. Such an increase in EPR sensitivity is achieved by using a non-resonant dielectric slab, placed on the aperture inside the cavity. The dielectric slab provides an increased magnetic field at the aperture and sample, while minimizing sensitive aperture resonance conditions. This work also introduces a DAR semi-spherical (SS)-TE011 geometry. The SS-TE011 geometry is attractive due to having twice the incident magnetic field at the aperture for a fixed input power. It has been shown that DAR provides sufficient sensitivity to make biologically relevant measurements both in vitro and in vivo Although in vivo tests have shown some effects of physiological motions that suggest the necessity of a more robust finger holder, equivalent dosimetry sensitivity of approximately 1.4 Gy has been demonstrated.


Subject(s)
Biological Assay/instrumentation , Electron Spin Resonance Spectroscopy/instrumentation , Nails/chemistry , Nails/radiation effects , Radiometry/instrumentation , Transducers , Electric Impedance , Equipment Design , Equipment Failure Analysis , Humans , Microwaves , Reproducibility of Results , Sensitivity and Specificity
13.
J Exp Bot ; 66(17): 5289-300, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25711701

ABSTRACT

Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P < 0.001) which failed to emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids/pharmacology , Medicago truncatula/genetics , Naphthaleneacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Amino Acid Sequence , Medicago truncatula/growth & development , Medicago truncatula/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Tandem Mass Spectrometry
14.
Radiat Prot Dosimetry ; 159(1-4): 172-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24803513

ABSTRACT

There is an imperative need to develop methods that can rapidly and accurately determine individual exposure to radiation for screening (triage) populations and guiding medical treatment in an emergency response to a large-scale radiological/nuclear event. To this end, a number of methods that rely on dose-dependent chemical and/or physical alterations in biomaterials or biological responses are in various stages of development. One such method, ex vivo electron paramagnetic resonance (EPR) nail dosimetry using human nail clippings, is a physical biodosimetry technique that takes advantage of a stable radiation-induced signal (RIS) in the keratin matrix of fingernails and toenails. This dosimetry method has the advantages of ubiquitous availability of the dosimetric material, easy and non-invasive sampling, and the potential for immediate and rapid dose assessment. The major challenge for ex vivo EPR nail dosimetry is the overlap of mechanically induced signals and the RIS. The difficulties of analysing the mixed EPR spectra of a clipped irradiated nail were addressed in the work described here. The following key factors lead to successful spectral analysis and dose assessment in ex vivo EPR nail dosimetry: (1) obtaining a thorough understanding of the chemical nature, the decay behaviour, and the microwave power dependence of the EPR signals, as well as the influence of variation in temperature, humidity, water content, and O2 level; (2) control of the variability among individual samples to achieve consistent shape and kinetics of the EPR spectra; (3) use of correlations between the multiple spectral components; and (4) use of optimised modelling and fitting of the EPR spectra to improve the accuracy and precision of the dose estimates derived from the nail spectra. In the work described here, two large clipped nail datasets were used to test the procedures and the spectral fitting model of the results obtained with it. A 15-donor nail set with 90 nail samples from 15 donors was used to validate the sample handling and spectral analysis methods that have been developed but without the interference of a native background signal. Good consistency has been obtained between the actual RIS and the estimated RIS computed from spectral analysis. In addition to the success in RIS estimation, a linear dose response has also been achieved for all individuals in this study, where the radiation dose ranges from 0 to 6 Gy. A second 16-donor nail set with 96 nail samples was used to test the spectral fitting model where the background signal was included during the fitting of the clipped nail spectra data. Although the dose response for the estimated and actual RIS calculated in both donor nail sets was similar, there was an increased variability in the RIS values that was likely due to the variability in the background signal between donors. Although the current methods of sample handling and spectral analysis show good potential for estimating the RIS in the EPR spectra of nail clippings, there is a remaining degree of variability in the RIS estimate that needs to be addressed; this should be achieved by identifying and accounting for demographic sources of variability in the background nail signal and the composition of the nail matrix.


Subject(s)
Biological Assay/methods , Electron Spin Resonance Spectroscopy/methods , Mechanotransduction, Cellular/radiation effects , Nails/radiation effects , Radiometry/methods , Humans , Nails/chemistry , Radiation Dosage
15.
Proteomics ; 11(9): 1696-706, 2011 May.
Article in English | MEDLINE | ID: mdl-21433000

ABSTRACT

Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96 h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress.


Subject(s)
Cold Temperature , Oryza/metabolism , Plant Proteins/analysis , Proteome/analysis , Proteomics/methods , Cations , Chromatography, Ion Exchange , Chromatography, Liquid , Mass Spectrometry , Stress, Physiological , Time Factors
16.
Proteomics ; 11(4): 535-53, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21243637

ABSTRACT

In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation.


Subject(s)
Mass Spectrometry/methods , Peptide Mapping/methods , Proteomics/methods
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 1): 031912, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18851070

ABSTRACT

During development, tissues often undergo rapid physical expansion due to cell proliferation. Continuous and discrete models of one- and two-dimensional tissue growth are developed and applied to observational data of the developing avian gut, where the gut tissue cells undergo dramatic proliferation. The discrete cellular automata model provides results at the level of individual cells that reflect a realistic stochasticity and nonuniformity expected in cellular systems. Averaging the discrete results predicts population-level properties of the system, which match those of the continuous model. This dual approach provides an understanding of the interaction between the individual-level and population-level aspects of a developmental growth process. Both models are applied to a case study involving the developing intestinal tract of a quail embryo. A nonuniform growth model accurately predicts the positions of measurable biological landmarks within the growing tissue. Furthermore, the discrete model provides a framework for modeling the interactions between growing tissues and other biological mechanisms, such as cell motility and proliferation on an expanding tissue.


Subject(s)
Biophysics/methods , Intestines/embryology , Animals , Birds , Cell Communication , Cell Movement , Cell Proliferation , Computer Simulation , Growth , Models, Biological , Models, Statistical , Models, Theoretical , Morphogenesis , Quail
18.
Dev Biol ; 302(2): 553-68, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17178116

ABSTRACT

A general mathematical model of cell invasion is developed and validated with an experimental system. The model incorporates two basic cell functions: non-directed (diffusive) motility and proliferation to a carrying capacity limit. The model is used here to investigate cell proliferation and motility differences along the axis of an invasion wave. Mathematical simulations yield surprising and counterintuitive predictions. In this general scenario, cells at the invasive front are proliferative and migrate into previously unoccupied tissues while those behind the front are essentially nonproliferative and do not directly migrate into unoccupied tissues. These differences are not innate to the cells, but are a function of proximity to uninvaded tissue. Therefore, proliferation at the invading front is the critical mechanism driving apparently directed invasion. An appropriate system to experimentally validate these predictions is the directional invasion and colonization of the gut by vagal neural crest cells that establish the enteric nervous system. An assay using gut organ culture with chick-quail grafting is used for this purpose. The experimental results are entirely concordant with the mathematical predictions. We conclude that proliferation at the wavefront is a key mechanism driving the invasive process. This has important implications not just for the neural crest, but for other invasion systems such as epidermal wound healing, carcinoma invasion and other developmental cell migrations.


Subject(s)
Cell Movement/physiology , Cell Proliferation , Enteric Nervous System/embryology , Intestines/innervation , Models, Biological , Neural Crest/physiology , Animals , Chick Embryo , Enteric Nervous System/cytology , Intestines/cytology , Intestines/embryology , Neural Crest/embryology , Organ Culture Techniques/methods , Quail , Transplantation, Heterologous
19.
Biol Reprod ; 69(6): 2015-21, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12930728

ABSTRACT

Enkephalin appears to exert an inhibitory action on LH secretion, but whether testosterone regulates enkephalin gene expression is unknown. This study tested the hypothesis that testosterone and/or season modulate preproenkephalin mRNA expression in specific areas of the hypothalamus. Romney Marsh rams were castrated (wethers) either during the breeding season or nonbreeding season and received intramuscular injections of either oil or testosterone propionate (five/group). Blood samples were taken for the assay of plasma LH and testosterone. Preproenkephalin mRNA expression was quantified in hypothalamic sections by in situ hybridization. Mean plasma LH concentrations were reduced and the interpulse interval for LH pulses was greater in testosterone propionate-treated wethers compared with oil-treated wethers, with no change in LH pulse amplitude. Testosterone propionate treatment reduced proenkephalin expression in the diagonal band of Broca, the caudal preoptic area, and the bed nucleus of the stria terminalis. Seasonal differences in proenkephalin expression were observed in the bed nucleus of the stria terminalis, lateral septum, periventricular nucleus, and paraventricular nucleus. No differences were observed between treatments in seven other regions examined. We conclude that testosterone and season regulate proenkephalin mRNA levels in the preoptic area/hypothalamus in the ram in a region-specific manner.


Subject(s)
Enkephalins/genetics , Preoptic Area/physiology , Protein Precursors/genetics , Sheep , Testosterone/physiology , Animals , Gene Expression Regulation , Hypothalamus/physiology , Luteinizing Hormone/blood , Male , RNA, Messenger/metabolism , Seasons , Testosterone/blood , Testosterone/pharmacology , Testosterone Propionate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...