Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(22): 5011-5022.e6, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37879332

ABSTRACT

Repeated exposure to psychostimulants, such as amphetamine, causes a long-lasting enhancement in the behavioral responses to the drug, called behavioral sensitization.1 This phenomenon involves several neuronal systems and brain areas, among which the dorsal striatum plays a key role.2 The endocannabinoid system (ECS) has been proposed to participate in this effect, but the neuronal basis of this interaction has not been investigated.3 In the CNS, the ECS exerts its functions mainly acting through the cannabinoid type-1 (CB1) receptor, which is highly expressed at terminals of striatal medium spiny neurons (MSNs) belonging to both the direct and indirect pathways.4 In this study, we show that, although striatal CB1 receptors are not involved in the acute response to amphetamine, the behavioral sensitization and related synaptic changes require the activation of CB1 receptors specifically located at striatopallidal MSNs (indirect pathway). These results highlight a new mechanism of psychostimulant sensitization, a phenomenon that plays a key role in the health-threatening effects of these drugs.


Subject(s)
Cannabinoids , Central Nervous System Stimulants , Amphetamine/pharmacology , Amphetamine/metabolism , Receptors, Cannabinoid/metabolism , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/metabolism , Neurons/metabolism , Corpus Striatum/physiology , Endocannabinoids/pharmacology , Cannabinoids/pharmacology
2.
Neuron ; 109(9): 1513-1526.e11, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33770505

ABSTRACT

Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior.


Subject(s)
Brain/metabolism , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/physiology , Synaptic Transmission/physiology , Animals , Brain/drug effects , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Catalepsy/chemically induced , Cell Membrane/metabolism , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Nociception/drug effects , Nociception/physiology , Signal Transduction/drug effects , Synaptic Transmission/drug effects
3.
Autophagy ; 16(12): 2289-2291, 2020 12.
Article in English | MEDLINE | ID: mdl-32981464

ABSTRACT

The recreational and medical use of cannabis is largely increasing worldwide. Cannabis use, however, can cause adverse side effects, so conducting innovative studies aimed to understand and potentially reduce cannabis-evoked harms is important. Previous research conducted on cultured neural cells had supported that CNR1/CB1R (cannabinoid receptor 1), the main molecular target of cannabis, affects macroautophagy/autophagy. However, it was not known whether CNR1 controls autophagy in the brain in vivo, and, eventually, what the functional consequences of a potential CNR1-autophagy connection could be. We have now found that Δ9-tetrahydrocannabinol (THC), the major intoxicating constituent of cannabis, impairs autophagy in the mouse striatum. Administration of autophagy activators (specifically, the rapalog temsirolimus and the disaccharide trehalose) rescues THC-induced autophagy inhibition and motor dyscoordination. The combination of various genetic strategies in vivo supports the idea that CNR1 molecules located on neurons belonging to the direct (striatonigral) pathway are required for the autophagy- and motor-impairing activity of THC. By identifying autophagy as a mechanistic link between THC and motor performance, our findings may open a new conceptual view on how cannabis acts in the brain.


Subject(s)
Cannabinoids , Animals , Autophagy , Brain , Dronabinol/pharmacology , Mice
4.
Elife ; 92020 08 10.
Article in English | MEDLINE | ID: mdl-32773031

ABSTRACT

The use of cannabis is rapidly expanding worldwide. Thus, innovative studies aimed to identify, understand and potentially reduce cannabis-evoked harms are warranted. Here, we found that Δ9-tetrahydrocannabinol, the psychoactive ingredient of cannabis, disrupts autophagy selectively in the striatum, a brain area that controls motor behavior, both in vitro and in vivo. Boosting autophagy, either pharmacologically (with temsirolimus) or by dietary intervention (with trehalose), rescued the Δ9-tetrahydrocannabinol-induced impairment of motor coordination in mice. The combination of conditional knockout mouse models and viral vector-mediated autophagy-modulating strategies in vivo showed that cannabinoid CB1 receptors located on neurons belonging to the direct (striatonigral) pathway are required for the motor-impairing activity of Δ9-tetrahydrocannabinol by inhibiting local autophagy. Taken together, these findings identify inhibition of autophagy as an unprecedented mechanistic link between cannabinoids and motor performance, and suggest that activators of autophagy might be considered as potential therapeutic tools to treat specific cannabinoid-evoked behavioral alterations.


Subject(s)
Autophagy/drug effects , Cannabinoids/pharmacology , Psychomotor Performance/drug effects , Putamen/physiology , Substantia Nigra/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Putamen/drug effects , Substantia Nigra/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...