Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Ageing Res Rev ; 99: 102392, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925481

ABSTRACT

The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.


Subject(s)
Endogenous Retroviruses , Multiple Sclerosis , Humans , Endogenous Retroviruses/pathogenicity , Endogenous Retroviruses/genetics , Multiple Sclerosis/virology , Multiple Sclerosis/etiology , Aging , Animals , Epigenesis, Genetic
3.
Int J Oncol ; 63(5)2023 11.
Article in English | MEDLINE | ID: mdl-37654195

ABSTRACT

Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro­inflammatory enzymes 5­lipoxygenase (5­LO) and cyclooxygenase­2 (COX­2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin­embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki­67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5­LO and COX­2. The CRC cell lines Caco­2 and LS­174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti­inflammatory drug celecoxib (CCX) and analyzed by reverse transcription­quantitative PCR and immunofluorescence for 5­LO, COX­2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX­2, 5­LO and KI­67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5­LO and COX­2 transcript and proteins in both Caco­2 and LS­174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX­2, 5­LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.


Subject(s)
Colorectal Neoplasms , Cytomegalovirus Infections , Humans , Arachidonate 5-Lipoxygenase/genetics , Caco-2 Cells , Cyclooxygenase 2/genetics , Ki-67 Antigen , Proto-Oncogene Proteins p21(ras)/genetics , Celecoxib/pharmacology , Cytomegalovirus/genetics , Ganciclovir , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/genetics , Colorectal Neoplasms/genetics , ErbB Receptors
4.
Oncogenesis ; 12(1): 10, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841802

ABSTRACT

Head and neck paragangliomas (HNPGLs), rare chemoresistant tumors curable only with surgery, are strongly influenced by genetic predisposition, hence patients and relatives require lifetime follow-up with MRI and/or PET-CT because of de novo disease risk. This entails exposure to electromagnetic/ionizing radiation, costs, and organizational challenges, because patients and relatives are scattered far from reference centers. Simplified first-line screening strategies are needed. We employed flow injection analysis tandem mass spectrometry, as used in newborn metabolic screening, to compare the plasma metabolic profile of HNPGL patients (59 samples, 56 cases) and healthy controls (24 samples, 24 cases). Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) highlighted a distinctive HNPGL signature, likely reflecting the anaplerotic conversion of the TCA cycle to glutaminolysis and catabolism of branched amino acids, DNA damage and deoxyadenosine (dAdo) accumulation, impairment of fatty acid oxidation, switch towards the Warburg effect and proinflammatory lysophosphatidylcholines (LPCs) signaling. Statistical analysis of the metabolites that most impacted on PLS-DA was extended to 10 acoustic neuroma and 2 cholesteatoma patients, confirming significant differences relative to the HNPGL plasma metabolomic profile. The best confusion matrix from the ROC curve built on 2 metabolites, dAdo and C26:0-LPC, provided specificity of 94.29% and sensitivity of 89.29%, with positive and negative predictive values of 96.2% and 84.6%, respectively. Analysis of dAdo and C26:0-LPC levels in dried venous and capillary blood confirmed that dAdo, likely deriving from 2'-deoxy-ATP accumulated in HNPGL cells following endogenous genotoxic damage, efficiently discriminated HNPGL patients from healthy controls and acoustic neuroma/cholesteatoma patients on easily manageable dried blood spots.

5.
PLoS One ; 16(4): e0249238, 2021.
Article in English | MEDLINE | ID: mdl-33901189

ABSTRACT

The crypt-villus axis represents the essential unit of the small intestine, which integrity and functions are fundamental to assure tissue and whole-body homeostasis. Disruption of pathways regulating the fine balance between proliferation and differentiation results in diseases development. Nowadays, it is well established that microRNAs (miRNAs) play a crucial role in the homeostasis maintenance and perturbation of their levels may promote tumor development. Here, by using microarray technology, we analysed the miRNAs differentially expressed between the crypt and the villus in mice ileum. The emerged miRNAs were further validated by Real Time qPCR in mouse model (ApcMin/+), human cell lines and human tissue samples (FAP) of colorectal cancer (CRC). Our results indicated that miRNAs more expressed in the villi compartment are negatively regulated in tumor specimens, thus suggesting a close association between these microRNAs and the differentiation process. Particularly, from our analysis let-7e appeared to be a promising target for possible future therapies and a valuable marker for tumor staging, being upregulated in differentiated cells and downregulated in early-stage colonic adenoma samples.


Subject(s)
Adenoma/pathology , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/pathology , Colorectal Neoplasms/pathology , MicroRNAs/metabolism , Adenoma/genetics , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Cell Line, Tumor , Colorectal Neoplasms/genetics , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
6.
Cancers (Basel) ; 13(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445508

ABSTRACT

The clinical progression of B cell chronic lymphocytic leukemia (CLL) is associated with immune cell dysfunction and a strong decrease of miR-181b-5p (miR-181b), promoting the death of CLL cells. Here we investigated whether the reduction of miR-181b impairs the immune response in CLL. We demonstrate that activated CD4+ T cells increase miR-181b expression in CLL through CD40-CD40L signaling, which enhances the maturation and activity of cytotoxic T cells and, consequently, the apoptotic response of CLL cells. The cytotoxic response is facilitated by a depletion of the anti-inflammatory cytokine interleukin 10, targeted by miR-181b. In vivo experiments in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice confirmed that miR-181b promotes the apoptotic death of CLL cells only when functional T cells are restored. Overall, our findings suggest that the reinstatement of miR-181b in CLL cells could be an exploitable adjuvant therapeutic option for the treatment of CLL.

7.
Int J Mol Sci ; 21(7)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260425

ABSTRACT

Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.


Subject(s)
Biomarkers/metabolism , Disease/genetics , Extracellular Vesicles/metabolism , Cell Communication , Extracellular Vesicles/genetics , Genetic Predisposition to Disease , Humans , Immunity , Signal Transduction
8.
Microorganisms ; 8(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110918

ABSTRACT

Helicobacter pylori (Hp) is the major recognized risk factor for non-cardia gastric cancer (GC), but only a fraction of infected subjects develop GC, thus GC risk might reflect other genetic/environmental cofactors and/or differences in virulence among infectious Hp strains. Focusing on a high GC risk area of Northern Italy (Cremona, Lombardy) and using archived paraffin-embedded biopsies, we investigated the associations between the Hp vacA and cagA genotype variants and gastric intraepithelial neoplasia (GIN, 33 cases) versus non-neoplastic gastroduodenal lesions (NNGDLs, 37 cases). The glmM gene and the cagA and vacA (s and m) genotypes were determined by polymerase chain reaction (PCR) and sequencing. Hp was confirmed in 37/37 (100%) NNGDLs and detected in 9/33 GINs (27%), consistently with the well-known Hp loss in GC. CagA was detected in 4/9 Hp-positive GINs and in 29/37 NNGDLs. The vacA s1a and m1 subtypes were more common in GINs than in NNGDLs (6/7 vs. 12/34, p=0.014, for s1a; 7/7 vs. 18/34, p=0.020 for m1), with significant vacA s genotype-specific variance. The GIN-associated vacA s1a sequences clustered together, suggesting that aggressive Hp strains from a unique founder contribute to GC in the high-risk area studied.

9.
J Hematol Oncol ; 12(1): 114, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31744508

ABSTRACT

Clonal evolution of chronic lymphocytic leukemia (CLL) often follows chemotherapy and is associated with adverse outcome, but also occurs in untreated patients, in which case its predictive role is debated. We investigated whether the selection and expansion of CLL clone(s) precede an aggressive disease shift. We found that clonal evolution occurs in all CLL patients, irrespective of the clinical outcome, but is faster during disease progression. In particular, changes in the frequency of nucleotide variants (NVs) in specific CLL-related genes may represent an indicator of poor clinical outcome.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Aberrations , Clonal Evolution , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mutation , Disease Progression , Humans , Longitudinal Studies , Prognosis , Survival Rate
10.
Br J Cancer ; 121(9): 768-775, 2019 10.
Article in English | MEDLINE | ID: mdl-31558803

ABSTRACT

BACKGROUND: Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune response against cancer neoantigens are based on the use of chemotherapeutics and other agents. Results are hampered by issues of efficacy, combinatorial approaches, dosing and toxicity. Here, we adopted a strategy based on the use of an immunomolecule that overcomes pharmachemical limitations. METHODS: Cytofluorometry, electron microscopy, RT-PCR, western blotting, apotome immunofluorescence, MLR and xenografts. RESULTS: We report that an ICD process can be activated without the use of pharmacological compounds. We show that in Kras-mut/TP53-mut colorectal cancer cells the 15 kDa ßGBP cytokine, a T cell effector with onco-suppressor properties and a potential role in cancer immunosurveillance, induces key canonical events required for ICD induction. We document ER stress, autophagy that extends from cancer cells to the corresponding xenograft tumours, CRT cell surface shifting, ATP release and evidence of dendritic cell activation, a process required for priming cytotoxic T cells into a specific anticancer immunogenic response. CONCLUSIONS: Our findings provide experimental evidence for a rationale to explore a strategy based on the use of an immunomolecule that as a single agent couples oncosuppression with the activation of procedures necessary for the induction of long term response to cancer.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/immunology , Adenosine Triphosphate/immunology , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Apoptosis/immunology , Autophagic Cell Death/drug effects , Autophagic Cell Death/immunology , Calreticulin/immunology , Calreticulin/metabolism , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Death/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/immunology , Female , Galectins/pharmacology , Heterografts , Humans , Immunologic Surveillance , Mice , Mice, Nude , Proto-Oncogene Proteins p21(ras)/metabolism , Unfolded Protein Response/drug effects
12.
Epigenomics ; 11(6): 587-604, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31066579

ABSTRACT

Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell (CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC) tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatellite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results: We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic potential, the identification of a MSI-related methylation signature could provide new insights and possible targets into metastatic CRC.


Subject(s)
Colonic Neoplasms/genetics , DNA Methylation , Microsatellite Instability , Neoplastic Stem Cells/pathology , Animals , Colonic Neoplasms/pathology , CpG Islands/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Heterografts , Humans , Mice
13.
Cancers (Basel) ; 11(4)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018621

ABSTRACT

Aneuploidy and overexpression of hsa-miR-155-5p (miR-155) characterize most solid and hematological malignancies. We recently demonstrated that miR-155 sustains aneuploidy at early stages of in vitro cellular transformation. During in vitro transformation of normal human fibroblast, upregulation of miR-155 downregulates spindle checkpoint proteins as the mitotic checkpoint serine/threonine kinase budding uninhibited by benzimidazoles 1 (BUB1), the centromere protein F (CENPF) and the zw10 kinetochore protein (ZW10), compromising the chromosome alignment at the metaphase plate and leading to aneuploidy in daughter cells. Here we show that the heterogeneous nuclear ribonucleoprotein L (HNRNPL) binds to the polymorphic marker D2S1888 at the 3'UTR of BUB1 gene, impairs the miR-155 targeting, and restores BUB1 expression in chronic lymphocytic leukemia. This mechanism occurs at advanced passages of cell transformation and allows the expansion of more favorable clones. Our findings have revealed, at least in part, the molecular mechanisms behind the chromosomal stabilization of cell lines and the concept that, to survive, tumor cells cannot continuously change their genetic heritage but need to stabilize the most suitable karyotype.

15.
Cancers (Basel) ; 11(3)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813557

ABSTRACT

In this review, we propose that paraganglioma is a fundamentally organized, albeit aberrant, tissue composed of neoplastic vascular and neural cell types that share a common origin from a multipotent mesenchymal-like stem/progenitor cell. This view is consistent with the pseudohypoxic footprint implicated in the molecular pathogenesis of the disease, is in harmony with the neural crest origin of the paraganglia, and is strongly supported by the physiological model of carotid body hyperplasia. Our immunomorphological and molecular studies of head and neck paragangliomas demonstrate in all cases relationships between the vascular and the neural tumor compartments, that share mesenchymal and immature vasculo-neural markers, conserved in derived cell cultures. This immature, multipotent phenotype is supported by constitutive amplification of NOTCH signaling genes and by loss of the microRNA-200s and -34s, which control NOTCH1, ZEB1, and PDGFRA in head and neck paraganglioma cells. Importantly, the neuroepithelial component is distinguished by extreme mitochondrial alterations, associated with collapse of the ΔΨm. Finally, our xenograft models of head and neck paraganglioma demonstrate that mesenchymal-like cells first give rise to a vasculo-angiogenic network, and then self-organize into neuroepithelial-like clusters, a process inhibited by treatment with imatinib.

16.
Breast Cancer Res Treat ; 175(2): 479-485, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30796655

ABSTRACT

PURPOSE: The role of non-genetic factors as modifiers of TP53-related hereditary breast cancer (BC) risk is debated. In this regard, little is known about the impact of germline TP53 mutations on BC in sub-Saharan Africa, where the disease often presents in non-contraceptive multiparous premenopausal women with extended history of breastfeeding. Herein, we report the germline TP53 mutations found in a series of 92 Sudanese premenopausal BC patients characterized for reproductive history. METHODS: The entire TP53 coding sequence, including intron-exon boundaries and UTRs, was analyzed via DHPLC and direct sequencing, and the association of TP53 genotypes with BC risk and with individual lifetime exposures to reproductive factors was investigated with statistical tools. RESULTS: The germline TP53 mutation spectrum comprised 20 variants, 15 in the non-coding and 5 in the coding region. The latter included a deleterious missense mutation, c.817C>T (p.Arg273Cys), in a unique patient, and the common and functionally relevant coding polymorphism at amino acid 72 [Pro72Arg (rs1042522)]. The non-coding mutations included c.919+1G>A, a known deleterious splice site mutation, also in a unique patient. Notably, the 2 carriers of deleterious TP53 mutations clustered in the subset of cases with stronger reproductive history relative to childbearing age. When analyzed in comparison to population controls, the codon 72 polymorphism did not reveal associations with BC. CONCLUSIONS: Our study suggests that the codon 72 Arg>Pro polymorphism is not implicated in premenopausal BC susceptibility, whereas multiparity and breastfeeding might be BC risk factors for carriers of deleterious TP53 mutations.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Reproduction/genetics , Tumor Suppressor Protein p53/genetics , Adult , Breast Neoplasms/epidemiology , Breast Neoplasms/physiopathology , Female , Genetic Testing , Genotype , Germ-Line Mutation/genetics , Heterozygote , Humans , Male , Middle Aged , Parity/genetics , Pregnancy , Premenopause/genetics , Premenopause/physiology , Reproduction/physiology , Reproductive History , Sudan/epidemiology
17.
Sci Rep ; 8(1): 13610, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206358

ABSTRACT

Paragangliomas (PGLs) are infiltrating autonomic nervous system tumors that cause important morbidity. At present, surgery is the only effective therapeutic option for this rare tumor. Thus, new agents for PGL treatment should be identified. Using unique PGL cell models established in our laboratory, we evaluated the effect of dichloroacetate (DCA) as single agent or in a novel combination with other metabolic drugs, including GW6471 and metformin. DCA and metformin had not been tested before in PGL. DCA reduced PGL cell viability and growth through mechanisms involving reactivation of PDH complex leading to promotion of oxidative metabolism, with lowering of lactate and enhanced ROS production. This resulted in cell cycle inhibition and induction of apoptosis in PGL cells, as shown by flow cytometry and immunoblot analyses. Moreover, DCA drastically impaired clonogenic activity and migration of PGL cells. Also metformin reduced PGL cell viability as single agent and the combinations of DCA, GW6471 and metformin had strong effects on cell viability. Furthermore, combined treatments had drastic and synergistic effects on clonogenic ability. In conclusion, DCA, GW6471 and metformin as single agents and in combination appear to have promising antitumor effects in unique cell models of PGL.


Subject(s)
Apoptosis/drug effects , Cell Cycle/drug effects , Dichloroacetic Acid/pharmacology , Metformin/pharmacology , Oxazoles/pharmacology , Paraganglioma/drug therapy , Tyrosine/analogs & derivatives , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Paraganglioma/metabolism , Paraganglioma/pathology , Tyrosine/pharmacology
19.
Acta Neuropathol ; 135(5): 779-798, 2018 05.
Article in English | MEDLINE | ID: mdl-29305721

ABSTRACT

Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protein expression levels. Both tumour tissue- and cell culture-derived xenografts recapitulated the vasculoneural paraganglioma structure and arose from mesenchymal-like cells through a fixed developmental sequence. First, vasculoangiogenesis organized the microenvironment, building a perivascular niche which in turn supported neurogenesis. Neuroepithelial differentiation was associated with severe mitochondrial dysfunction, not present in cultured paraganglioma cells, but acquired in vivo during xenograft formation. Vasculogenesis was the Achilles' heel of xenograft development. In fact, imatinib, that targets endothelial-mural signalling, blocked paraganglioma xenograft formation (11 xenografts from 12 cell transplants in the control group versus 2 out of 10 in the treated group, P = 0.0015). Overall our key results were unaffected by the SDHx gene carrier status of the patient, characterized for 70 out of 77 cases. In conclusion, we explain the biphasic vasculoneural structure of paragangliomas and identify an early and pharmacologically actionable phase of paraganglioma organization.


Subject(s)
Antineoplastic Agents/therapeutic use , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/physiopathology , Imatinib Mesylate/therapeutic use , Paraganglioma/drug therapy , Paraganglioma/physiopathology , Animals , Antineoplastic Agents/pharmacology , Cell Line , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Humans , Imatinib Mesylate/pharmacology , Mice, Inbred NOD , Mice, SCID , MicroRNAs/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Organogenesis/drug effects , Organogenesis/physiology , Paraganglioma/genetics , Paraganglioma/pathology , Primary Cell Culture , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Xenograft Model Antitumor Assays
20.
PLoS One ; 12(6): e0178995, 2017.
Article in English | MEDLINE | ID: mdl-28594934

ABSTRACT

Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3ß/ß-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3ß/ß-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL.


Subject(s)
Head and Neck Neoplasms/metabolism , PPAR alpha/antagonists & inhibitors , PPAR alpha/metabolism , Apoptosis/drug effects , Blotting, Western , Caspase 3/metabolism , Caspase 6/metabolism , Caspase 7/drug effects , Caspase 7/metabolism , Caspases/metabolism , Caspases, Initiator/metabolism , Cell Cycle/drug effects , Cell Survival/drug effects , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Oxazoles/pharmacology , PPAR alpha/agonists , Pyrimidines/pharmacology , Tumor Cells, Cultured , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...