Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 384, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693837

ABSTRACT

Single cell data integration methods aim to integrate cells across data batches and modalities, and data integration tasks can be categorized into horizontal, vertical, diagonal, and mosaic integration, where mosaic integration is the most general and challenging case with few methods developed. We propose scMoMaT, a method that is able to integrate single cell multi-omics data under the mosaic integration scenario using matrix tri-factorization. During integration, scMoMaT is also able to uncover the cluster specific bio-markers across modalities. These multi-modal bio-markers are used to interpret and annotate the clusters to cell types. Moreover, scMoMaT can integrate cell batches with unequal cell type compositions. Applying scMoMaT to multiple real and simulated datasets demonstrated these features of scMoMaT and showed that scMoMaT has superior performance compared to existing methods. Specifically, we show that integrated cell embedding combined with learned bio-markers lead to cell type annotations of higher quality or resolution compared to their original annotations.


Subject(s)
Multiomics , Software
2.
Bioinformatics ; 38(19): 4554-4561, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35929808

ABSTRACT

MOTIVATION: In many biomedical studies, there arises the need to integrate data from multiple directly or indirectly related sources. Collective matrix factorization (CMF) and its variants are models designed to collectively learn from arbitrary collections of matrices. The latent factors learnt are rich integrative representations that can be used in downstream tasks, such as clustering or relation prediction with standard machine-learning models. Previous CMF-based methods have numerous modeling limitations. They do not adequately capture complex non-linear interactions and do not explicitly model varying sparsity and noise levels in the inputs, and some cannot model inputs with multiple datatypes. These inadequacies limit their use on many biomedical datasets. RESULTS: To address these limitations, we develop Neural Collective Matrix Factorization (NCMF), the first fully neural approach to CMF. We evaluate NCMF on relation prediction tasks of gene-disease association prediction and adverse drug event prediction, using multiple datasets. In each case, data are obtained from heterogeneous publicly available databases and used to learn representations to build predictive models. NCMF is found to outperform previous CMF-based methods and several state-of-the-art graph embedding methods for representation learning in our experiments. Our experiments illustrate the versatility and efficacy of NCMF in representation learning for seamless integration of heterogeneous data. AVAILABILITY AND IMPLEMENTATION: https://github.com/ajayago/NCMF_bioinformatics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Machine Learning , Databases, Factual
3.
JMIR Med Inform ; 10(1): e28842, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35049514

ABSTRACT

BACKGROUND: Patient representation learning aims to learn features, also called representations, from input sources automatically, often in an unsupervised manner, for use in predictive models. This obviates the need for cumbersome, time- and resource-intensive manual feature engineering, especially from unstructured data such as text, images, or graphs. Most previous techniques have used neural network-based autoencoders to learn patient representations, primarily from clinical notes in electronic medical records (EMRs). Knowledge graphs (KGs), with clinical entities as nodes and their relations as edges, can be extracted automatically from biomedical literature and provide complementary information to EMR data that have been found to provide valuable predictive signals. OBJECTIVE: This study aims to evaluate the efficacy of collective matrix factorization (CMF), both the classical variant and a recent neural architecture called deep CMF (DCMF), in integrating heterogeneous data sources from EMR and KG to obtain patient representations for clinical decision support tasks. METHODS: Using a recent formulation for obtaining graph representations through matrix factorization within the context of CMF, we infused auxiliary information during patient representation learning. We also extended the DCMF architecture to create a task-specific end-to-end model that learns to simultaneously find effective patient representations and predictions. We compared the efficacy of such a model to that of first learning unsupervised representations and then independently learning a predictive model. We evaluated patient representation learning using CMF-based methods and autoencoders for 2 clinical decision support tasks on a large EMR data set. RESULTS: Our experiments show that DCMF provides a seamless way for integrating multiple sources of data to obtain patient representations, both in unsupervised and supervised settings. Its performance in single-source settings is comparable with that of previous autoencoder-based representation learning methods. When DCMF is used to obtain representations from a combination of EMR and KG, where most previous autoencoder-based methods cannot be used directly, its performance is superior to that of previous nonneural methods for CMF. Infusing information from KGs into patient representations using DCMF was found to improve downstream predictive performance. CONCLUSIONS: Our experiments indicate that DCMF is a versatile model that can be used to obtain representations from single and multiple data sources and combine information from EMR data and KGs. Furthermore, DCMF can be used to learn representations in both supervised and unsupervised settings. Thus, DCMF offers an effective way of integrating heterogeneous data sources and infusing auxiliary knowledge into patient representations.

4.
JMIR Med Inform ; 9(10): e32730, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34694230

ABSTRACT

BACKGROUND: Adverse drug events (ADEs) are unintended side effects of drugs that cause substantial clinical and economic burdens globally. Not all ADEs are discovered during clinical trials; therefore, postmarketing surveillance, called pharmacovigilance, is routinely conducted to find unknown ADEs. A wealth of information, which facilitates ADE discovery, lies in the growing body of biomedical literature. Knowledge graphs (KGs) encode information from the literature, where the vertices and the edges represent clinical concepts and their relations, respectively. The scale and unstructured form of the literature necessitates the use of natural language processing (NLP) to automatically create such KGs. Previous studies have demonstrated the utility of such literature-derived KGs in ADE prediction. Through unsupervised learning of the representations (features) of clinical concepts from the KG, which are used in machine learning models, state-of-the-art results for ADE prediction were obtained on benchmark data sets. OBJECTIVE: Due to the use of NLP to infer literature-derived KGs, there is noise in the form of false positive (erroneous) and false negative (absent) nodes and edges. Previous representation learning methods do not account for such inaccuracies in the graph. NLP algorithms can quantify the confidence in their inference of extracted concepts and relations from the literature. Our hypothesis, which motivates this work, is that by using such confidence scores during representation learning, the learned embeddings would yield better features for ADE prediction models. METHODS: We developed methods to use these confidence scores on two well-known representation learning methods-DeepWalk and Translating Embeddings for Modeling Multi-relational Data (TransE)-to develop their weighted versions: Weighted DeepWalk and Weighted TransE. These methods were used to learn representations from a large literature-derived KG, the Semantic MEDLINE Database, which contains more than 93 million clinical relations. They were compared with Embedding of Semantic Predications, which, to our knowledge, is the best reported representation learning method using the Semantic MEDLINE Database with state-of-the-art results for ADE prediction. Representations learned from different methods were used (separately) as features of drugs and diseases to build classification models for ADE prediction using benchmark data sets. The methods were compared rigorously over multiple cross-validation settings. RESULTS: The weighted versions we designed were able to learn representations that yielded more accurate predictive models than the corresponding unweighted versions of both DeepWalk and TransE, as well as Embedding of Semantic Predications, in our experiments. There were performance improvements of up to 5.75% in the F1-score and 8.4% in the area under the receiver operating characteristic curve value, thus advancing the state of the art in ADE prediction from literature-derived KGs. CONCLUSIONS: Our classification models can be used to aid pharmacovigilance teams in detecting potentially new ADEs. Our experiments demonstrate the importance of modeling inaccuracies in the inferred KGs for representation learning.

SELECTION OF CITATIONS
SEARCH DETAIL
...