Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1226: 340236, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36068052

ABSTRACT

Collision cross sections (CCS) have been described as relevant molecular descriptors in metabolomics and lipidomics analyses for ascertaining compound identity. Ion mobility spectrometry (IMS) allows to determine CCS with different techniques, such as drift tube ion mobility spectrometry (DTIMS), traveling wave ion mobility spectrometry (TWIMS) or trapped ion mobility spectrometry (TIMS). In contrast with DTIMS where CCS can be obtained directly with measured drift times and mathematical relationship, TWIMS and TIMS techniques require an additional step of calibration to obtain CCS values. However, literature reports significantly disparate CCS values depending on the calibrant used (often more than 10%), as no consensus has been reached to define a universal CCS reference standard or harmonized calibration procedure. Therefore, publicly available CCS databases cannot be regarded as readily interoperable and exchangeable. Here, we performed a comprehensive evaluation of 11 distinct CCS calibrants in a traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) instrument. We showed that, using lipids from plasma as model compounds, CCS determination drastically fluctuates from one calibrant to the other with up to 25% differences, which precludes direct CCS comparison. Using the large panel of calibration curves generated, we showed that any CCS value can be efficiently re-calibrated relatively to the calibration curve made with the widely used Tune Mix solution whatever the calibration procedure originally used. The re-calibrated CCS values for each calibrant constitute a database which allows to correct any deviation on lipid CCS values whatever the calibrant originally used. Resulting corrected CCS values from plasma lipids were thus efficiently matched to those previously reported in the literature (with deviations<2%). Therefore, this work shows that unique and comparable CCS values can be obtained upon re-calibration relatively to Tune Mix CCS values, while also paving the way for the establishment of a universal CCS database of various metabolite or lipid classes.


Subject(s)
Ion Mobility Spectrometry , Metabolomics , Calibration , Ion Mobility Spectrometry/methods , Lipids , Mass Spectrometry/methods
3.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Article in English | MEDLINE | ID: mdl-30184128

ABSTRACT

This study aimed at evaluating the alteration of the colonic microbiota and the changes in the mucus layer thickness induced by oral administration of living bifidobacteria in rats. The study was performed on rats fed with Bifidobacterium pseudolongum strain Patronus (1010 bacteria per day for 7 days). This bacterial administration led to a large increase of mucus thickness (57%, P < 0.05). Both quantitative PCR and high-throughput sequencing of bacterial 16S rRNA gene revealed a significant increase of the amount of the Bifidobacterium genus in the microbiota of rats fed with the strain Patronus, associated with a decrease of Akkermansia muciniphila. The increase in mucus thickness could be due to an increase of the bifidobacteria per se or via the decrease of A. muciniphila, a major mucin-degrading species. As the mucus layer plays an essential role in gut protection, our data enlighten the importance of studying mucus-degrading bacteria for understanding the underlying etiology of diseases such as intestinal bowel diseases and to implement new therapeutic strategies.


Subject(s)
Bifidobacterium , Colon/microbiology , Gastrointestinal Microbiome , Mucus/cytology , Administration, Oral , Animals , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Male , RNA, Ribosomal, 16S/genetics , Rats , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...