Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-454829

ABSTRACT

Three highly pathogenic betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks are likely to occur. Evidence suggests that neutralizing antibodies are important for protection against infection with CoVs. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-coronavirus protection. To this end, we previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 fusion machinery, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and displays cross reactive binding to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is also maintained against the Alpha, Delta and Gamma variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region on sarbecovirus spikes. A 1.74[A] crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs. Thus, CV3-25 defines a novel site of sarbecovirus vulnerability that will inform pan-CoV vaccine development.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-436684

ABSTRACT

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterized 198 antibodies isolated from four COVID19+ subjects and identified 14 SARS-CoV-2 neutralizing antibodies. One targeted the NTD, one recognized an epitope in S2 and twelve bound the RBD. Three anti-RBD neutralizing antibodies cross-neutralized SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency rather than the antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. The anti-S2 antibody also neutralized SARS-CoV-1 and all four cross-neutralizing antibodies neutralized the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-287482

ABSTRACT

Convalescent plasma from SARS-CoV-2 infected individuals and monoclonal antibodies were shown to potently neutralize viral and pseudoviral particles carrying the S glycoprotein. However, a non-negligent proportion of plasma samples from infected individuals as well as S-specific monoclonal antibodies were reported to be non-neutralizing despite efficient interaction with the S glycoprotein in different biochemical assays using soluble recombinant forms of S or when expressed at the cell surface. How neutralization relates to binding of S glycoprotein in the context of viral particles remains to be established. Here we developed a pseudovirus capture assay (VCA) to measure the capacity of plasma samples or antibodies immobilized on ELISA plates to bind to membrane-bound S glycoproteins from SARS-CoV-2 expressed at the surface of lentiviral particles. By performing VCA and neutralization assays we observed a strong correlation between these two parameters. However, while we found that plasma samples unable to capture viral particles did not neutralize, capture did not guarantee neutralization, indicating that the capacity of antibodies to bind to the S glycoprotein at the surface of viral particles is required but not sufficient to mediate neutralization. Altogether, our results highlights the importance of better understanding the inactivation of S by plasma and neutralizing antibodies.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-148692

ABSTRACT

SARS-CoV-2 is a betacoronavirus virus responsible for the COVID-19 pandemic. Here, we determined the X-ray crystal structure of a potent neutralizing monoclonal antibody, CV30, isolated from a patient infected with SARS-CoV-2, in complex with the receptor binding domain (RBD). The structure reveals CV30s epitope overlaps with the human ACE2 receptor binding site thus providing the structural basis for its neutralization by preventing ACE2 binding.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-091298

ABSTRACT

B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages. Only two antibodies displayed neutralizing activity against SARS-CoV-2 pseudo-virus. The most potent antibody bound the RBD in a manner that prevented binding to the ACE2 receptor, while the other bound outside the RBD. Our study indicates that the majority of antibodies against the viral envelope spike that were generated during the first weeks of COVID-19 infection are non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 spike-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive/therapeutic potential and can serve as templates for vaccine-design. IN BRIEFSARS-CoV-2 infection leads to expansion of diverse B cells clones against the viral spike glycoprotein (S). The antibodies bind S with high affinity despite being minimally mutated. Thus, the development of neutralizing antibody responses by vaccination will require the activation of certain naive B cells without requiring extensive somatic mutation. HighlightsO_LIAnalysis of early B cell response to SARS-CoV-2 spike protein C_LIO_LIMost antibodies target non-neutralizing epitopes C_LIO_LIPotent neutralizing mAb blocks the interaction of the S protein with ACE2 C_LIO_LINeutralizing antibodies are minimally mutated C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...