Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
2.
Front Cell Dev Biol ; 10: 966950, 2022.
Article in English | MEDLINE | ID: mdl-36105351

ABSTRACT

Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.

3.
Cell Commun Signal ; 19(1): 48, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902596

ABSTRACT

BACKGROUND: The G-protein-coupled receptor GPR55 has been implicated in multiple biological activities, which has fuelled interest in its functional targeting. Its controversial pharmacology and often species-dependent regulation have impacted upon the potential translation of preclinical data involving GPR55. RESULTS: With the aim to identify novel GPR55 regulators, we have investigated lysophosphatidylinositol (LPI)-induced GPR55-mediated signal transduction. The expression system for wild-type and mutated GPR55 was HeLa cells silenced for their endogenous receptor by stable expression of a short-hairpin RNA specific for GPR55 5'-UTR, which allowed definition of the requirement of GPR55 Lys80 for LPI-induced MAPK activation and receptor internalisation. In RAW264.7 macrophages, GPR55 pathways were investigated by Gpr55 silencing using small-interfering RNAs, which demonstrated that LPI increased intracellular Ca2+ levels and induced actin filopodium formation through GPR55 activation. Furthermore, the LPI/GPR55 axis was shown to have an active role in osteoclastogenesis of precursor RAW264.7 cells induced by 'receptor-activator of nuclear factor kappa-ß ligand' (RANKL). Indeed, this differentiation into mature osteoclasts was associated with a 14-fold increase in Gpr55 mRNA levels. Moreover, GPR55 silencing and antagonism impaired RANKL-induced transcription of the osteoclastogenesis markers: 'nuclear factor of activated T-cells, cytoplasmic 1', matrix metalloproteinase-9, cathepsin-K, tartrate-resistant acid phosphatase, and the calcitonin receptor, as evaluated by real-time PCR. Phage display was previously used to identify peptides that bind to GPR55. Here, the GPR55-specific peptide-P1 strongly inhibited osteoclast maturation of RAW264.7 macrophages, confirming its activity as a blocker of GPR55-mediated functions. Although osteoclast syncytium formation was not affected by pharmacological regulation of GPR55, osteoclast activity was dependent on GPR55 signalling, as shown with resorption assays on bone slices, where LPI stimulated and GPR55 antagonists inhibited bone erosion. CONCLUSIONS: Our data indicate that GPR55 represents a target for development of novel therapeutic approaches for treatment of pathological conditions caused by osteoclast-exacerbated bone degradation, such as in osteoporosis or during establishment of bone metastases. Video abstract.


Subject(s)
Lysophospholipids/metabolism , Osteogenesis , Peptides/metabolism , Receptors, Cannabinoid/metabolism , Actin Cytoskeleton/metabolism , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Calcium/metabolism , Cell Differentiation , Endocytosis , HEK293 Cells , Humans , Ligands , Lysine/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , Mice , Mutant Proteins/metabolism , Osteoclasts/metabolism , Pseudopodia/metabolism , RAW 264.7 Cells
4.
Biomed Pharmacother ; 123: 109764, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31901551

ABSTRACT

Recent insights have indicated an active role of the complex complement system not only in immunity, but also in bone remodeling. Evidence from knockout mice and observations from skeletal diseases have drawn attention to the C5a/C5aR axis of the complement cascade in the modulation of osteoclast functions and as potential therapeutic targets for treatment of bone pathologies. With the aim to identify novel C5aR regulators, a medicinal chemistry program was initiated, driven by structural information on a minor pocket of C5aR that has been proposed to be a key motif for C5aR intracellular activation. The impact of the peptidomimetic orthosteric C5aR antagonist (PMX-53), of two newly synthesized allosteric C5aR antagonists (DF2593A, DF3016A), and of C5aR down-regulation by specific siRNAs, were examined for regulation of osteoclastogenesis, using a well-validated in-vitro model starting from RAW264.7 precursor cells. Both pharmacological and molecular approaches reduced osteoclast maturation of RAW264.7 cells induced by receptor-activator of nuclear factor kappa-B ligand (RANKL), which limited the transcription of several differentiation markers evaluated by real-time PCR, including nuclear factor of activated T-cell 1, matrix metalloproteinase-9, cathepsin-K, and tartrate-resistant acid phosphatase. These treatments were ineffective on the subsequent step of osteoclast syncytium formation, apparently as a consequence of reduction of C5aR mRNA levels in the course of osteoclastogenesis, as monitored by real-time PCR. Among the C5aR antagonists analyzed, DF3016A inhibited osteoclast degradation activity through inhibition of C5aR signal transduction and transcription. These data confirm the preclinical relevance of this novel therapeutic candidate.


Subject(s)
Bone Resorption/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Tetrazoles/pharmacology , Animals , Cell Differentiation/drug effects , Mice , Osteogenesis/drug effects , RANK Ligand/pharmacology , RAW 264.7 Cells
5.
Cell Commun Signal ; 17(1): 20, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30823936

ABSTRACT

BACKGROUND: Shp1, a tyrosine-phosphatase-1 containing the Src-homology 2 (SH2) domain, is involved in inflammatory and immune reactions, where it regulates diverse signalling pathways, usually by limiting cell responses through dephosphorylation of target molecules. Moreover, Shp1 regulates actin dynamics. One Shp1 target is Src, which controls many cellular functions including actin dynamics. Src has been previously shown to be activated by a signalling cascade initiated by the cytosolic-phospholipase A2 (cPLA2) metabolite glycerophosphoinositol 4-phosphate (GroPIns4P), which enhances actin polymerisation and motility. While the signalling cascade downstream Src has been fully defined, the mechanism by which GroPIns4P activates Src remains unknown. METHODS: Affinity chromatography, mass spectrometry and co-immunoprecipitation studies were employed to identify the GroPIns4P-interactors; among these Shp1 was selected for further analysis. The specific Shp1 residues interacting with GroPIns4P were revealed by NMR and validated by site-directed mutagenesis and biophysical methods such as circular dichroism, isothermal calorimetry, fluorescence spectroscopy, surface plasmon resonance and computational modelling. Morphological and motility assays were performed in NIH3T3 fibroblasts. RESULTS: We find that Shp1 is the direct cellular target of GroPIns4P. GroPIns4P directly binds to the Shp1-SH2 domain region (with the crucial residues being Ser 118, Arg 138 and Ser 140) and thereby promotes the association between Shp1 and Src, and the dephosphorylation of the Src-inhibitory phosphotyrosine in position 530, resulting in Src activation. As a consequence, fibroblast cells exposed to GroPIns4P show significantly enhanced wound healing capability, indicating that GroPIns4P has a stimulatory role to activate fibroblast migration. GroPIns4P is produced by cPLA2 upon stimulation by diverse receptors, including the EGF receptor. Indeed, endogenously-produced GroPIns4P was shown to mediate the EGF-induced cell motility. CONCLUSIONS: This study identifies a so-far undescribed mechanism of Shp1/Src modulation that promotes cell motility and that is dependent on the cPLA2 metabolite GroPIns4P. We show that GroPIns4P is required for EGF-induced fibroblast migration and that it is part of a cPLA2/GroPIns4P/Shp1/Src cascade that might have broad implications for studies of immune-inflammatory response and cancer.


Subject(s)
Cell Movement , ErbB Receptors/metabolism , Inositol Phosphates/metabolism , Phospholipases A2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , src-Family Kinases/metabolism , Animals , Binding Sites , Epidermal Growth Factor/pharmacology , Mice , NIH 3T3 Cells , Phosphorylation , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 6/chemistry , RAW 264.7 Cells , Wound Healing , src Homology Domains
6.
J Biol Chem ; 292(31): 12828-12841, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28600357

ABSTRACT

Inflammatory responses are elicited through lipid products of phospholipase A2 activity that acts on the membrane phospholipids, including the phosphoinositides, to form the proinflammatory arachidonic acid and, in parallel, the glycerophosphoinositols. Here, we investigate the role of the glycerophosphoinositol in the inflammatory response. We show that it is part of a negative feedback loop that limits proinflammatory and prothrombotic responses in human monocytes stimulated with lipopolysaccharide. This inhibition is exerted both on the signaling cascade initiated by the lipopolysaccharide with the glycerophosphoinositol-dependent decrease in IκB kinase α/ß, p38, JNK, and Erk1/2 kinase phosphorylation and at the nuclear level with decreased NF-κB translocation and binding to inflammatory gene promoters. In a model of endotoxemia in the mouse, treatment with glycerophosphoinositol reduced TNF-α synthesis, which supports the concept that glycerophosphoinositol inhibits the de novo synthesis of proinflammatory and prothrombotic compounds and might thus have a role as an endogenous mediator in the resolution of inflammation. As indicated, this effect of glycerophosphoinositol can also be exploited in the treatment of manifestations of severe inflammation by exogenous administration of the compound.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Blood Coagulation/drug effects , Endotoxemia/drug therapy , Gene Expression Regulation/drug effects , Inositol Phosphates/therapeutic use , Monocytes/drug effects , Protein Processing, Post-Translational/drug effects , Active Transport, Cell Nucleus/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Dose-Response Relationship, Drug , Endotoxemia/immunology , Endotoxemia/metabolism , HeLa Cells , Humans , Inositol Phosphates/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/toxicity , Male , Mice, Inbred C57BL , Microscopy, Confocal , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/blood , NF-kappa B/metabolism , Phosphorylation/drug effects
7.
Oncotarget ; 8(3): 5179-5195, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28029647

ABSTRACT

Expression of the lysophosphatidylinositol receptor GPR55 correlates with invasive potential of metastatic cells and bone metastasis formation of different types of tumors. These findings suggest a role for GPR55 signaling in cancer progression, including in lymphoproliferative diseases. Here, we screened a M13-phage-displayed random library using the bait of HEK293 cells that heterologously expressed full-length HA-GPR55. We selected a set of phagotopes that carried 7-mer insert peptides flanked by a pair of cysteine residues, which resulted in cyclized peptides. Sequencing of selected phagotopes dictated the primary structure for the synthetic FITC-labeled peptide P1, which was analyzed for binding specificity to immunoprecipitated HA-GPR55, and to endogenously expressed GPR55, using cells interfered or not for GPR55, as well as for co-localization imaging with HA-GPR55 at the membrane level. The peptide P1 stimulated GPR55 endocytosis and inhibited GPR55-dependent proliferation of EHEB and DeFew cells, two human B-lymphoblastoid cell lines. Our data support the potential therapeutic application of peptide ligands of GPR55 for targeting and inhibiting growth of neoplastic cells, which overexpress GPR55 and are dependent on GPR55 signaling for their proliferation.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphoproliferative Disorders/metabolism , Peptides, Cyclic/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Cricetulus , Drug Screening Assays, Antitumor , Endocytosis , HEK293 Cells , HeLa Cells , Humans , Molecular Targeted Therapy , Peptide Library , Peptides, Cyclic/chemistry , Receptors, Cannabinoid
8.
PLoS One ; 10(4): e0123198, 2015.
Article in English | MEDLINE | ID: mdl-25860666

ABSTRACT

The glycerophosphoinositols constitute a class of biologically active lipid-derived mediators whose intracellular levels are modulated during physiological and pathological cell processes. Comprehensive assessment of the role of these compounds expands beyond the cellular biology of lipids and includes rapid and unambiguous measurement in cells and tissues. Here we describe a sensitive and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitative analysis of the most abundant among these phosphoinositide derivatives in mammalian cells, the glycerophosphoinositol (GroPIns). The method has been developed in mouse Raw 264.7 macrophages with limits of quantitation at 3 ng/ml. Validation on the same cell line showed excellent response in terms of linear dynamic range (from 3 to 3,000 ng/ml), intra-day and inter-day precision (coefficient of variation ≤ 7.10%) and accuracy (between 98.1 and 109.0%) in the range 10-320 ng/ml. As proof of concept, a simplified analytical platform based on this method and external calibration was also tested on four stimulated and unstimulated cell lines, including Raw 264.7 macrophages, Jurkat T-cells, A375MM melanoma cells and rat basophilic leukemia RBL-2H3 cells. The results indicate a wide variation in GroPIns levels among different cell lines and stimulation conditions, although the measurements were always in line with the literature. No significant matrix effects were observed thus indicating that the here proposed method can be of general use for similar determinations in cells of different origin.


Subject(s)
Chromatography, High Pressure Liquid/methods , Inositol Phosphates/chemistry , Tandem Mass Spectrometry/methods , Animals , Cell Line , Chromatography, High Pressure Liquid/standards , Humans , Mice , Rats , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/standards
9.
J Biol Chem ; 290(7): 4260-71, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25528375

ABSTRACT

The known mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) hydrolyze glycerophosphodiesters. In this study, two novel members of the mammalian GP-PDE family, GDE4 and GDE7, were isolated, and the molecular basis of mammalian GP-PDEs was further explored. The GDE4 and GDE7 sequences are highly homologous and evolutionarily close. GDE4 is expressed in intestinal epithelial cells, spermatids, and macrophages, whereas GDE7 is particularly expressed in gastro-esophageal epithelial cells. Unlike other mammalian GP-PDEs, GDE4 and GDE7 cannot hydrolyze either glycerophosphoinositol or glycerophosphocholine. Unexpectedly, both GDE4 and GDE7 show a lysophospholipase D activity toward lysophosphatidylcholine (lyso-PC). We purified the recombinant GDE4 and GDE7 proteins and show that these enzymes can hydrolyze lyso-PC to produce lysophosphatidic acid (LPA). Further characterization of purified recombinant GDE4 showed that it can also convert lyso-platelet-activating factor (1-O-alkyl-sn-glycero-3-phosphocholine; lyso-PAF) to alkyl-LPA. These data contribute to our current understanding of mammalian GP-PDEs and of their physiological roles via the control of lyso-PC and lyso-PAF metabolism in gastrointestinal epithelial cells and macrophages.


Subject(s)
Lysophospholipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Platelet Activating Factor/analogs & derivatives , Amino Acid Sequence , Animals , Blotting, Western , Cells, Cultured , In Situ Hybridization , Male , Mice , Mice, Inbred ICR , Mice, Obese , Microscopy, Fluorescence , Molecular Sequence Data , Phosphoric Diester Hydrolases/genetics , Phylogeny , Platelet Activating Factor/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
10.
ACS Nano ; 8(3): 2575-83, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24524333

ABSTRACT

Direct and quantitative detection of unlabeled glycerophosphoinositol (GroPIns), an abundant cytosolic phosphoinositide derivative, would allow rapid evaluation of several malignant cell transformations. Here we report label-free analysis of GroPIns via surface-enhanced Raman spectroscopy (SERS) with a sensitivity of 200 nM, well below its apparent concentration in cells. Crucially, our SERS substrates, based on lithographically defined gold nanofeatures, can be used to predict accurately the GroPIns concentration even in multicomponent mixtures, avoiding the preliminary separation of individual compounds. Our results represent a critical step toward the creation of SERS-based biosensor for rapid, label-free, and reproducible detection of specific molecules, overcoming limits of current experimental methods.


Subject(s)
Inositol Phosphates/analysis , Spectrum Analysis, Raman , Biomarkers/analysis , Biomarkers/chemistry , Glycerol/chemistry , Gold/chemistry , Inositol/chemistry , Inositol Phosphates/chemistry , Optical Phenomena , Reproducibility of Results , Surface Properties , Time Factors
11.
J Cell Sci ; 127(Pt 5): 977-93, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24413173

ABSTRACT

Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.


Subject(s)
Clathrin/metabolism , Endocytosis , Group IV Phospholipases A2/physiology , Amino Acid Sequence , Calcium Signaling , Endosomes/metabolism , Group IV Phospholipases A2/chemistry , HeLa Cells , Humans , Hydrolysis , Molecular Sequence Data , Phosphatidylinositols/metabolism , Protein Sorting Signals , Protein Transport
12.
FEBS J ; 281(4): 998-1016, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24373430

ABSTRACT

The glycerophosphodiester phosphodiesterases are evolutionarily conserved proteins that have been linked to several patho/physiological functions, comprising bacterial pathogenicity and mammalian cell proliferation or differentiation. The bacterial enzymes do not show preferential substrate selectivities among the glycerophosphodiesters, and they are mainly dedicated to glycerophosphodiester hydrolysis, producing glycerophosphate and alcohols as the building blocks that are required for bacterial biosynthetic pathways. In some cases, this enzymatic activity has been demonstrated to contribute to bacterial pathogenicity, such as with Hemophilus influenzae. Mammalian glyerophosphodiesterases have high substrate specificities, even if the number of potential physiological substrates is continuously increasing. Some of these mammalian enzymes have been directly linked to cell differentiation, such as GDE2, which triggers motor neuron differentiation, and GDE3, the enzymatic activity of which is necessary and sufficient to induce osteoblast differentiation. Instead, GDE5 has been shown to inhibit skeletal muscle development independent of its enzymatic activity.


Subject(s)
Phosphoric Diester Hydrolases/metabolism , Animals , Cell Differentiation/physiology , Escherichia coli/enzymology , Escherichia coli/metabolism , Haemophilus influenzae/enzymology , Haemophilus influenzae/metabolism , Humans , Substrate Specificity
13.
Front Immunol ; 4: 213, 2013.
Article in English | MEDLINE | ID: mdl-23908653

ABSTRACT

Glycerophosphoinositols (GPIs) are bioactive, diffusible phosphoinositide metabolites of phospholipase A2 that act both intracellularly and in a paracrine fashion following their uptake by specific transporters. The most representative compound, glycerophosphoinositol (GroPIns), is a ubiquitous component of eukaryotic cells that participates in central processes, including cell proliferation and survival. Moreover, glycerophosphoinositol 4-phosphate (GroPIns4P) controls actin dynamics in several cell systems by regulating Rho GTPases. Recently, immune cells have emerged as targets of the biological activities of the GPIs. We have shown that exogenous GroPIns4P enhances CXCL12-induced T-cell chemotaxis through activation of the kinase Lck in a cAMP/PKA-dependent manner. While highlighting the potential of GroPIns4P as an immunomodulator, this finding raises questions on the role of endogenously produced GroPIns4P as well as of other GPIs in the regulation of the adaptive immune responses under homeostatic and pathological settings. Here we will summarize our current understanding of the biological activities of the GPIs, with a focus on lymphocytes, highlighting open questions and potential developments in this promising new area.

14.
J Biol Chem ; 287(20): 16849-59, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22393044

ABSTRACT

Group IVα phospholipase A(2) (PLA(2)IVα) is a lipolytic enzyme that catalyzes the hydrolysis of membrane phospholipids to generate precursors of potent inflammatory lipid mediators. Here, the role of PLA(2)IVα in Fc receptor (FcR)-mediated phagocytosis was investigated, demonstrating that PLA(2)IVα is selectively activated upon FcR-mediated phagocytosis in macrophages and that it rapidly translocates to the site of the nascent phagosome. Moreover, pharmacological inhibition of PLA(2)IVα by pyrrophenone reduces particle internalization by up to 50%. In parallel, fibroblasts from PLA(2)IVα knock-out mice overexpressing FcγRIIA and able to internalize IgG-opsonized beads show 50% lower phagocytosis, compared with wild-type cells, and transfection of PLA(2)IVα fully recovers this impaired function. Interestingly, transfection of the catalytically inactive deleted PLA(2)IVα mutant (PLA(2)IVα(1-525)) and point mutant (PLA(2)IVα-S228C) also promotes recovery of this impaired function. Finally, transfection of the PLA(2)IVα C2 domain (which is directly involved in PLA(2)IVα membrane binding), but not of PLA(2)IVα-D43N (which cannot bind to membranes), rescues FcR-mediated phagocytosis. These data unveil a new mechanism of action for PLA(2)IVα, which demonstrates that the membrane binding, and not the enzymatic activity, is required for PLA(2)IVα modulation of FcR-mediated phagocytosis.


Subject(s)
Cell Membrane/enzymology , Group IV Phospholipases A2/metabolism , Macrophages/enzymology , Phagocytosis/physiology , Phagosomes/metabolism , Amino Acid Substitution , Animals , Cell Line, Transformed , Cell Membrane/genetics , Fibroblasts/cytology , Fibroblasts/enzymology , Group IV Phospholipases A2/genetics , Humans , Macrophages/cytology , Mice , Mice, Knockout , Mutation, Missense , Phagocytosis/drug effects , Phagosomes/genetics , Protein Structure, Tertiary , Protein Transport/drug effects , Protein Transport/physiology , Pyrrolidines/pharmacology , Receptors, IgG/genetics , Receptors, IgG/metabolism
15.
Nat Cell Biol ; 14(4): 343-54, 2012 Feb 26.
Article in English | MEDLINE | ID: mdl-22366688

ABSTRACT

Large pleiomorphic carriers leave the Golgi complex for the plasma membrane by en bloc extrusion of specialized tubular domains, which then undergo fission. Several components of the underlying molecular machinery have been identified, including those involved in the budding/initiation of tubular carrier precursors (for example, the phosphoinositide kinase PI(4)KIIIß, the GTPase ARF, and FAPP2), and in the fission of these precursors (for example, PKD, CtBP1-S/BARS). However, how these proteins interact to bring about carrier formation is poorly understood. Here, we describe a protein complex that mediates carrier formation and contains budding and fission molecules, as well as other molecules, such as the adaptor protein 14-3-3γ. Specifically, we show that 14-3-3γ dimers bridge CtBP1-S/BARS with PI(4)KIIIß, and that the resulting complex is stabilized by phosphorylation by PKD and PAK. Disrupting the association of these proteins inhibits the fission of elongating carrier precursors, indicating that this complex couples the carrier budding and fission processes.


Subject(s)
14-3-3 Proteins/metabolism , Alcohol Oxidoreductases/metabolism , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Golgi Apparatus/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , COS Cells , Chlorocebus aethiops , Dimerization , Humans , Phosphorylation , Protein Kinase C/metabolism , Rats , p21-Activated Kinases/metabolism
16.
Biochem Soc Trans ; 40(1): 101-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22260673

ABSTRACT

Interest in the glycerophosphoinositols has been increasing recently, on the basis of their biological activities. The cellular metabolism of these water-soluble bioactive phosphoinositide metabolites has been clarified, with the identification of the specific enzyme involved in their synthesis, PLA2IVα (phospholipase A2 IVα), and the definition of their phosphodiesterase-based catabolism, and thus inactivation. The functional roles and mechanisms of action of these compounds have been investigated in different cellular contexts. This has led to their definition in the control of various cell functions, such as cell proliferation in the thyroid and actin cytoskeleton organization in fibroblasts and lymphocytes. Roles for the glycerophosphoinositols in immune and inflammatory responses are also being defined. In addition to these physiological functions, the glycerophosphoinositols have potential anti-metastatic activities that should lead to their pharmacological exploitation.


Subject(s)
Inositol Phosphates/physiology , Second Messenger Systems , Actin Cytoskeleton/metabolism , Animals , Cell Membrane/metabolism , Cell Physiological Phenomena , Humans , Inositol Phosphates/metabolism , Mice , Phosphatidylinositols/metabolism , Phosphatidylinositols/physiology , Phospholipases A2/metabolism
17.
Cell Physiol Biochem ; 26(4-5): 587-96, 2010.
Article in English | MEDLINE | ID: mdl-21063096

ABSTRACT

The serum- and glucocorticoid-regulated kinase (Sgk1) is essential for hormonal regulation of ENaC-mediated sodium transport and is involved in the transduction of growth-factor-dependent cell survival and proliferation. The identification of molecular partners for Sgk1 is crucial for the understanding of its mechanisms of action. We performed a yeast two-hybrid screening based on a human kidney cDNA library to identify molecular partners of Sgk1. As a result the screening revealed a specific interaction between Sgk1 and a 60 kDa Lysophospholipase (LysoLP). LysoLP is a poorly characterized enzyme that, based on sequence analysis, might possess lysophospholipase and asparaginase activities. We demonstrate that LysoLP has indeed a lysophospholipase activity and affects metabolic functions related to cell proliferation and regulation of membrane channels. Moreover we demonstrate in the Xenopus oocyte expression system that LysoLP downregulates basal and Sgk1-dependent ENaC activity. In conclusion LysoLP may represent a new player in the regulation of ENaC and Sgk1-dependent signaling.


Subject(s)
Epithelial Sodium Channels/metabolism , Immediate-Early Proteins/metabolism , Lysophospholipase/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Line , Down-Regulation , Gene Library , Humans , Lysophospholipase/chemistry , Lysophospholipase/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oocytes/metabolism , Phosphorylation , Signal Transduction , Two-Hybrid System Techniques , Xenopus/growth & development
18.
J Biol Chem ; 285(36): 27652-63, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20576599

ABSTRACT

Mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) have been identified recently and shown to be implicated in several physiological functions. This study isolated a novel GP-PDE, GDE5, and showed that GDE5 selectively hydrolyzes glycerophosphocholine (GroPCho) and controls skeletal muscle development. We show that GDE5 expression was reduced in atrophied skeletal muscles in mice and that decreasing GDE5 abundance promoted myoblastic differentiation, suggesting that decreased GDE5 expression has a counter-regulatory effect on the progression of skeletal muscle atrophy. Forced expression of full-length GDE5 in cultured myoblasts suppressed myogenic differentiation. Unexpectedly, a truncated GDE5 construct (GDE5DeltaC471), which contained a GP-PDE sequence identified in other GP-PDEs but lacked GroPCho phosphodiesterase activity, showed a similar inhibitory effect. Furthermore, transgenic mice specifically expressing GDE5DeltaC471 in skeletal muscle showed less skeletal muscle mass, especially type II fiber-rich muscle. These results indicate that GDE5 negatively regulates skeletal muscle development even without GroPCho phosphodiesterase activity, providing novel insight into the biological significance of mammalian GP-PDE function in a non-enzymatic mechanism.


Subject(s)
Muscle Development , Muscle, Skeletal/enzymology , Muscle, Skeletal/growth & development , Phosphoric Diester Hydrolases/metabolism , Amino Acid Sequence , Animals , Cell Differentiation , Cell Line , Cloning, Molecular , Computational Biology , DNA, Complementary/genetics , Gene Expression Regulation, Enzymologic , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscular Atrophy/enzymology , Muscular Atrophy/genetics , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
19.
PLoS Biol ; 7(9): e1000194, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19753100

ABSTRACT

The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A(2) (PLA(2))-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca(2+)-dependent, cytosolic PLA(2) (cPLA(2)alpha) onto the Golgi complex itself, and that this cPLA(2)alpha is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA(2)alpha has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA(2)alpha as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.


Subject(s)
Golgi Apparatus/enzymology , Group IV Phospholipases A2/metabolism , Animals , Calcium/metabolism , Dogs , Golgi Apparatus/ultrastructure , Group IV Phospholipases A2/genetics , HeLa Cells , Humans , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Protein Transport , RNA Interference , RNA, Small Interfering/genetics , Rats , Secretory Pathway , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism
20.
Cell Mol Life Sci ; 66(21): 3449-67, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19669618

ABSTRACT

The glycerophosphoinositols are cellular products of phospholipase A(2) and lysolipase activities on the membrane phosphoinositides. Their intracellular concentrations can vary upon oncogenic transformation, cell differentiation and hormonal stimulation. Specific glycerophosphodiester phosphodiesterases are involved in their catabolism, which, as with their formation, is under hormonal regulation. With their mechanisms of action including modulation of adenylyl cyclase, intracellular calcium levels, and Rho-GTPases, the glycerophosphoinositols have diverse effects in multiple cell types: induction of cell proliferation in thyroid cells; modulation of actin cytoskeleton organisation in fibroblasts; and reduction of the invasive potential of tumour cell lines. More recent investigations include their effects in inflammatory and immune responses. Indeed, the glycerophosphoinositols enhance cytokine-dependent chemotaxis in T-lymphocytes induced by SDF-1alpha-receptor activation, indicating roles for these compounds as modulators of T-cell signalling and T-cell responses.


Subject(s)
Cells/metabolism , Inositol Phosphates/metabolism , Inositol Phosphates/physiology , Animals , Cell Physiological Phenomena , Humans , Lipids/chemistry , Lipids/physiology , Models, Biological , Phosphatidylinositols/metabolism , Phosphatidylinositols/physiology , Second Messenger Systems/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...