Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 123(43): 9087-9097, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31577444

ABSTRACT

The two inverse peptides methionine-valine (Met-Val) and valine-methionine (Val-Met) are investigated in an oxidative radiolysis process in water. The OH radical yields products with very different absorption spectra and concentration effects: Met-Val yields one main product with a band at about 400 nm and other products at higher energies; there is no concentration effect. Val-Met yields at least three products, with a striking concentration effect. Molecular simulations are performed with a combination of the Monte Carlo, density functional theory, and reaction field methods. The simulation of the possible transients enables an interpretation of the radiolysis: (1) Met-Val undergoes an H atom uptake leaving mainly a neutral radical with a 2-center-3-electron (2c-3e) SN bond, which cannot dimerize. Other radicals are present at higher energies. (2) Val-Met undergoes mainly an electron uptake leaving a cation monomer with a (2c-3e) SO bond and a cation dimer with a (2c-3e) SS bond. At higher energies, neutral radicals are possible. This cation monomer can transfer a proton toward a neutral peptide, leaving a neutral radical.


Subject(s)
Dipeptides/chemistry , Methionine/chemistry , Valine/chemistry , Cations/chemistry , Dipeptides/radiation effects , Free Radicals/chemistry , Methionine/radiation effects , Models, Chemical , Molecular Structure , Oxidation-Reduction , Pulse Radiolysis , Valine/radiation effects
2.
J Phys Chem B ; 123(30): 6599-6608, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31294554

ABSTRACT

The detailed mechanism of the reaction between SCN- and the OH· radical and the formation of the dimer radical (SCN)2·- are studied by picosecond pulse radiolysis. First, concentrated SCN- solutions are used to observe directly the formation and decay of SCNOH·- in neutral and basic solutions. Then, the spectro-kinetic data, constituting a large matrix of data of the absorbance at different times and different wavelengths, obtained by pulse radiolysis measurements with a streak camera, in neutral and basic SCN- solutions, are analyzed simultaneously. Data analysis allowed us to deduce the absorption spectra of different radicals with their extinction coefficient and also to determine the rate constants of different reactions involved in the formation and decay of (SCN)2·-. Molecular simulations of the absorption spectra of the different species were also performed. The absorption spectrum of the radical SCN· is determined and is found to be different than that reported previously. It does not present a Gaussian shape centered at 330 nm; the absorption around 310 and 380 nm is not negligible. In addition, in a solution at pH 13, it is found that the (SCN)2·- radical is paired with an alkaline cation, inducing a blueshift of the absorption band compared to the free (SCN)2·-. Finally, the presence of K+ cations catalyzes the disproportionation reaction of (SCN)2·- and affects the kinetics.

3.
J Phys Chem Lett ; 9(17): 5105-5109, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30132673

ABSTRACT

The primary localization process of radiation-induced charges (holes (cation radical sites) and excess electrons) remains poorly understood, even at the level of monomeric DNA/RNA models, in particular, in an aqueous environment. We report the first spectroscopic study of charge transfer occurring in radiolysis of aqueous uridine 5'-monophosphate (UMP) solutions and its components: uridine, uracil, ribose, and phosphate. Our results show that prehydrated electrons effectively attach to the base site of UMP; the holes in UMP formed by either direct ionization or reaction of UMP with the radiation-mediated water cation radical (H2O•+) facilely localize on the ribose site, despite the fact that a part of them were initially created on either the phosphate or uracil. The nature of phosphate-to-sugar hole transfer is characterized as a barrierless intramolecular electron transfer with a time constant of 2.5 ns, while the base-to-sugar hole transfer occurs much faster, within a 5 ps electron pulse.

4.
Phys Chem Chem Phys ; 20(23): 15671-15679, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29845125

ABSTRACT

Picosecond pulse radiolysis measurements were performed in neat D2O and H2O in order to study the isotopic effect on the time-resolved yield of the hydrated electron and hydroxyl radical. First, the absorption band of the hydrated electron in D2O, eD2O-, is measured between 250 and 1500 nm. The molar absorption coefficient of the solvated electron spectrum in D2O was determined using the isosbestic point method by scavenging the solvated electron using methyl viologen. The amplitude and shape of the absorption spectrum of the hydrated electron in D2O are different from those previously reported in the literature. The maximum of the hydrated electron in the D2O absorption band is ca. 704 nm with a molar absorption coefficient of (22 900 ± 500) L mol-1 cm-1. Based on this extinction coefficient, the radiolytic yield of eD2O- just after the 7 ps electron pulse was determined to be (4.4 ± 0.2) × 10-7 mol J-1, which coincides with the one for eH2O- in H2O. The time-dependent radiolytic yield of eD2O- was determined from a few ps to 8 ns. To determine the OD˙ radical yield, the contribution of the solvated electron and of the transient species produced by the electron pulse in the windows of the fused silica optical cell was taken into account for the analysis of the transient absorption measurements at 260 nm. Therefore, an appropriate experimental methodology is used for measuring low absorbance at two different wavelengths in ps pulse radiolysis. The yield of the OD˙ radical just after the 7 ps electron pulse was found to be (5.0 ± 0.2) × 10-7 mol J-1. In the spurs of ionization, the decay rate of eD2O- is slower than eH2O-, whereas the decay rate of OD˙ is similar to the one of OH˙. Here, the established time-dependent yield of the solvated electron and the hydroxyl radical provide the foundation for improving the models used for spur reaction simulations in heavy water mainly for the chemistry of CANDU reactors.

5.
Phys Chem Chem Phys ; 20(21): 14927-14937, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29786710

ABSTRACT

In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.


Subject(s)
DNA/chemistry , Phosphates/chemistry , Base Sequence , Cytosine/chemistry , Free Radicals/chemistry , Kinetics , Oxidation-Reduction , Thermodynamics
6.
J Phys Chem B ; 122(7): 2121-2129, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29365267

ABSTRACT

With nitric acid (HNO3) being at the core of nuclear technology through actinides separation and extraction processes, achieving a complete characterization of the complex processes involving concentrated HNO3 solutions under ionizing radiation equates bringing efficiency and safety into their operation. In this work, the three mechanisms contributing to the formation of nitrate radicals (NO3•) in concentrated nitric acid were investigated by measuring the radiolytic yield of NO3• in HNO3 solutions (0.5-23.5 M) at room (22.5 °C) and elevated (80 °C) temperatures on time scales spanning from picosecond to microsecond by pulse radiolysis measurements. We conclude that the formation yield of NO3•, just after the 7 ps electron pulse, is due to the direct effect and to the ultrafast electron transfer reaction between NO3- and the water cation radical, H2O•+. The absolute formation yield of NO3• radicals due to the direct effect, GNO3•dir, is found to be (3.4 ± 0.1) × 10-7 mol·J-1, irrespective of the concentration and temperature. On longer time scales, >1 ns, an additional contribution to NO3• formation from the reaction between •OH radicals and undissociated HNO3 is observed. The rate constant of this reaction, which is activation-controlled, was determined to be (5.3 ± 0.2) × 107 M-1·s-1 for 22.5 °C, reaching a value of (1.1 ± 0.2) × 108 M-1·s-1 at 80 °C.

7.
Radiat Res ; 186(6): 650-658, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27869553

ABSTRACT

We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical (•OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 109 and 1.8 × 107 M-1 s-1, respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N2O) and nitromethane (CH3NO2) were also examined. Decay of [Formula: see text] due to scavenging by N2O and CH3NO2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N2O than for CH3NO2, revealing lower solubility of N2O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH3NO2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N2O was slightly higher than that in water containing N2O, and the same tendency was found for CH3NO2.


Subject(s)
Cellulose/analogs & derivatives , Hydrogels/chemistry , Cellulose/chemistry , Kinetics , Pulse Radiolysis , Water/chemistry
8.
J Phys Chem B ; 120(29): 7201-6, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27362328

ABSTRACT

The knowledge of the absorption spectrum of hydrated electron is of importance in numerous pulse radiolysis studies because it is often used for dosimetry or for second-order rate constant determination. We present a direct method for the evaluation of the molar absorption coefficient of the hydrated electron. It is based on the wavelength measurement of isosbestic points during the reaction of e(-)aq with the methylviologen MV(2+) cations which leads to the formation of MV(+•). The molar absorption coefficient of hydrated electron is obtained using the value of the molar absorption coefficient of MV(+•) at the isosbestic point at 600 nm, i.e., ε600nm,(MV(+•)) = 13500 ± 300 L mol(-1) cm(-1). Therefore, at the maximum of the absorption spectrum of e(-)aq at 715 nm, the value is ε715nm,(e(-)aq) = 19700 ± 400 L mol(-1) cm(-1). The absorption spectrum of the hydrated electron has been re-evaluated and completed from 260 to 850 nm.

9.
J Phys Chem B ; 120(22): 5008-14, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27171587

ABSTRACT

The decay mechanism of NO3(•) has been determined through a combination of experiment and calculation for 7 mol dm(-3) solutions of deaerated aqueous LiNO3 and HNO3, in the absence and presence of hydrazine (N2H4, N2H5(+), and N2H6(2+)). In the absence of hydrazine, the predominant NO3(•) decay pathways are strongly dependent upon the pH of the solution. For neat, neutral pH LiNO3 solutions (7 mol dm(-3)), NO3(•) produced by the pulse is fully consumed within 160 µs by OH(•) (37%), H2O (29%), NO2(-) (17%), and NO2 (17%). For acidic HNO3 solutions (7 mol dm(-3)), radiolytically produced NO3(•) is predominantly consumed within 1 ms by HNO2 (15%) and NO2 (80%). Intervening formulations exhibit the mechanistic transition from neat LiNO3 to neat HNO3. In highly acidic nitric acid solution, hydrazine exists mainly as N2H5(+) and N2H6(2+), both of which rapidly consume NO3(•) in addition to other decay mechanisms, with rate constants of 2.9 (±0.9) × 10(7) and 1.3 (±0.3) × 10(6) dm(3) mol(-1) s(-1), respectively.

10.
J Phys Chem B ; 120(9): 2388-96, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26840402

ABSTRACT

The ester propylene carbonate (PC) is a solvent with a high static dielectric constant where the charges generated by ionizing radiation are expected to be long-lived at room temperature. Time-resolved optical absorption spectroscopy after picosecond electron pulses reveals the formation of a UV band, within less than two nanoseconds, that is assigned to the radical anion PC(-•), arising from a fast attachment reaction of electrons onto PC. Assignment and reactivity of PC(-•) in neat solvent and solutions are discussed in relation with data obtained in solutions of PC in water under reducing or oxidizing conditions and in solutions in PC of aromatic scavengers with various reduction potentials. The fate of the electrons and the ionization yield in PC are compared with those of other solvents.

11.
J Phys Chem Lett ; 7(1): 186-90, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26706441

ABSTRACT

The behavior of carbonates is critical for a detailed understanding of aging phenomena in Li-ion batteries. Here we study the first reaction stages of propylene carbonate (PC), a cyclical carbonate, by picosecond pulse radiolysis. An absorption band with a maximum around 1360 nm is observed at 20 ps after the electron pulse and is shifted to 1310 nm after 50 ps. This band presents the features of a solvated electron absorption band, the solvation lasting up to 50 ps. Surprisingly, in this polar solvent, the solvated electron follows an ultrafast decay and disappears with a half time of 360 ps. This is attributed to the formation of a radical anion PC(-•). The yield of the solvated electron is low, suggesting that the radical anions are mainly directly produced from presolvated electrons. These results demonstrate that the initial electron transfers mechanisms are strongly different in linear compared with cyclical carbonates.

12.
ChemSusChem ; 8(21): 3605-16, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26212854

ABSTRACT

The ageing phenomena occurring in various diethyl carbonate/LiPF6 solutions are studied using gamma and pulse radiolysis as a tool to generate similar species as the ones occurring in electrolysis of Li-ion batteries (LIBs). According to picosecond pulse radiolysis experiments, the reaction of the electron with (Li(+), PF6(-)) is ultrafast, leading to the formation of fluoride anions that can then precipitate into LiF(s). Moreover, direct radiation-matter interaction with the salt produces reactive fluorine atoms forming HF(g) and C2H5F(g). The strong Lewis acid PF5 is also formed. This species then forms various R(1)R(2)R(3) P=O molecules, where R is mainly -F, -OH, and -OC2H5. Substitution reactions take place and oligomers are slowly formed. Similar results were obtained in the ageing of an electrochemical cell filled with the same model solution. This study demonstrates that radiolysis enables a description of the reactivity in LIBs from the picosecond timescale until a few days.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Lithium Compounds/chemistry , Electrolysis , Mass Spectrometry , Pulse Radiolysis , Solutions , Time Factors , Viscosity
13.
J Phys Chem B ; 119(16): 5282-98, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25822000

ABSTRACT

Pulse radiolysis was used to study the mechanism of HO(•)-induced polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, in aqueous solution. A step-by-step mechanism has been found which involves a recurrent oxidation process by HO(•) hydroxyl radicals produced by water radiolysis. Furthermore, the cation radical, EDOT(•)(+), has been proposed as the promoter of the first step of polymerization. The determination of rate constants values and the attribution of transient and stable species were confirmed by molecular simulations and spectrokinetic analysis. Moreover, applying a series of electron pulses enabled in situ PEDOT polymerization. These polymers, which were characterized in solution or after deposition, form globular self-assembled structures with interesting conducting properties. Such a synthesis initiated for the first time by an electron accelerator gives us a glimpse of future promising industrial applications in the field of conducting polymers synthesis.

14.
J Phys Chem A ; 118(40): 9319-29, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25198291

ABSTRACT

γ-rays and pulse radiolysis of aqueous solutions of Ni(2+) ions in the presence of polyacrylate (PA(-)) and 2-propanol leads to the formation of metastable species absorbing at 540 nm that are ascribed to "pink" oligomeric clusters of a few nickel atoms only. The molar absorption coefficient is evaluated as ε540 nm = 3300 ± 300 L mol(-1) cm(-1) per Ni(0) atom. The successive steps from the reduction of Ni(2+) into Ni(+) ions to the formation of the pink clusters at 540 nm under conditions of complexation by PA(-) are investigated by pulse radiolysis. The yield of the formation of pink clusters increases markedly with the irradiation dose rate, demonstrating the occurrence of the disproportionation of the [Ni(+), PA(-)] complex after a single electron pulse. The reduction and nucleation mechanisms, including rate constants, in competition with the back oxidation by protons, particularly at low dose rate, are discussed.

15.
Int J Radiat Biol ; 90(6): 495-502, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24597783

ABSTRACT

PURPOSE: The hydroxyl radical ((●)OH)-induced oxidation reactions of isomeric hydroxy naphthoquinones (generally having anti-tumor activities) namely, lawsone and juglone, were carried out and the reaction mechanism was elucidated. MATERIALS AND METHODS: The degradation products from the reaction of (●)OH (produced by H(2)O(2)/UV) with lawsone and juglone were analyzed using a liquid chromatography quadrupole-time-of-flight mass spectrometer (LC-Q-TOF-MS). The transient intermediate studies were investigated using picosecond pulse radiolysis technique. RESULTS: Mono hydroxylated and dihydroxylated adducts of both lawsone and juglone were identified from the product analysis. The isomeric mono-hydroxylated adducts of lawsone were confirmed using survival yield (SY) analysis. The hydroxylated adducts of lawsone also underwent dimerization reaction. The transient spectral analysis using pulse radiolysis studies revealed the formation of hydroxycyclohexadienyl type radical of both lawsone and juglone as the initially formed intermediate. CONCLUSIONS: The (●)OH-induced reactions of both lawsone and juglone result in the mono and di-hydoxylated derivatives. The demonstration of the various isomeric products using mass spectrometry is a clear proof of the addition probability of (●)OH at different positions of lawsone and juglone, which is generally a difficult task using other analytical techniques.


Subject(s)
Naphthoquinones/chemistry , Naphthoquinones/radiation effects , Chromatography, Liquid , Hydroxyl Radical/chemistry , Hydroxyl Radical/radiation effects , Models, Chemical , Molecular Structure , Oxidation-Reduction , Pulse Radiolysis , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Ultraviolet Rays
16.
J Phys Chem B ; 118(1): 287-96, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24345312

ABSTRACT

We have studied the dynamics of solvation of electron injected directly into primary alcohols as well as that of fluorenone anion using pulse radiolysis technique with the time resolution of about 15 ps. Unlike in the previous reports, we observe nonexponential dynamics of both electron and anion solvation. While the ultrafast component, τ1 (<15 ps) representing the inertial time scale of the dynamics is faster than the time resolution of the spectrometer, the slower component, τ2, has been assigned to the translational motion leading to structural changes of the hydrogen bonding network of the solvent in the inner solvation cell or alcohol cluster. τ2 agrees well with the electron solvation times reported by the earlier authors. τ3 is associated with the restructuring of the hydrogen bond network structure of the solvent in the region outside the solvation cell. Nonexponential solvation dynamics of the fluorenone anion has been described well by a two-component process. The most important observation in this work is that the lifetime of the shorter component, τ1, determined in four alcoholic solvents, is much longer than the electron solvation time in the corresponding solvents determined in this work or anion solvation time reported earlier. The lifetime of this component is nearly comparable with the average dipolar solvation time but shorter than the longitudinal relaxation time of the solvent. In the case of anion, τ1 has been assigned to the restructuring of the first solvation shell by breakage of solvent hydrogen bonds of the fluorenone molecule and formation of hydrogen bonds with the anion. In this case, too, the longer component, τ2, with the lifetime of a few nanoseconds, has been assigned to reorganization of hydrogen bonds in the solvent hydrogen bond network structure.

17.
J Phys Chem A ; 117(42): 10801-10, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24070331

ABSTRACT

The diethyl carbonate, DEC, is an ester that is used as a solvent in Li-ion batteries, but its behavior under ionizing radiation was unknown. The transient optical absorption spectra, the decay kinetics, and the influence of various scavengers have been studied by using the picosecond laser-triggered electron accelerator ELYSE. In neat DEC, the intense near-IR (NIR) absorption spectrum is assigned to the solvated electron. It is overlapped in the visible range by another transient but longer-lived and less intense band that is assigned to the oxidized radical DEC(-H). The solvated electron molar absorption coefficients and radiolytic yield evolution from 25 ps, the geminate recombination kinetics, and the rate constants of electron transfer reactions to scavengers are determined. The radiolytic mechanism, indicating a certain radioresistance of DEC, is compared with that for other solvents.


Subject(s)
Diethyl Pyrocarbonate/analogs & derivatives , Pulse Radiolysis/methods , Diethyl Pyrocarbonate/chemistry , Kinetics , Spectroscopy, Near-Infrared
18.
J Phys Chem A ; 117(5): 877-87, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23298154

ABSTRACT

The reaction of (•)OH with Br(-) has been reinvestigated by picosecond pulse radiolysis combined with streak camera absorption detection and the obtained spectro-kinetics data have been globally analyzed using Bayesian data analysis. For the first time, the absorption spectrum of the intermediate species BrOH(•-) has been determined. This species absorbs in the same spectral domain as Br(2)(•-): the band maximum is roughly at the same wavelength (λ(max) = 352 nm instead of 354 nm) but the extinction coefficient is smaller (ε(max) = 7800 ± 400 dm(3) mol(-1) cm(-1) compared with 9600 ± 300 dm(3) mol(-1) cm(-1)) and the band is broader (88 nm versus 76 nm). Quantum chemical calculations have also been performed and corroborate the experimental results. In contrast to Br(2)(•-), the existence of several water-BrOH(•-) configurations leading to different transition energies may account for the broadening of the absorption spectrum in addition to the higher number of degrees of freedom.


Subject(s)
Bromides/chemistry , Hydroxyl Radical/chemistry , Ions/chemistry , Oxidation-Reduction , Quantum Theory
19.
Chemistry ; 13(32): 8979-84, 2007.
Article in English | MEDLINE | ID: mdl-17694531

ABSTRACT

The reactions of hydrated electrons (e(aq) (-)) with thymine dimer 2 and thymidine have been investigated by radiolytic methods coupled with product studies, and addressed computationally by means of BB1K-HMDFT calculations. Pulse radiolysis revealed that one-electron reduction of the thymine dimer 2 affords the radical anion of thymidine (5) with t(1/2)<35 ns. Indeed, the theoretical study suggests that radical anion 3, in which the spin density and charge distribution are located in both thymine rings, undergoes a fast partially ionic splitting of the cyclobutane with a half-life of a few ps. This model fits with the in vivo observation of thymine dimer repair in DNA by photolyase. gamma-Radiolysis of thymine dimer 2 demonstrates that the one-electron reduction and the subsequent cleavage of the cyclobutane ring does not proceed by means of a radical chain mechanism, that is, in this model reaction the T(-)* is unable to transfer an electron to the thymine dimer 2.


Subject(s)
Cyclobutanes/chemical synthesis , Pyrimidine Dimers/chemistry , Thymidine/chemistry , Thymine/chemistry , Anions/chemistry , Cyclobutanes/chemistry , Cyclobutanes/radiation effects , Dimerization , Electrons , Free Radicals/chemistry , Gamma Rays , Models, Chemical , Molecular Conformation , Pulse Radiolysis , Pyrimidine Dimers/radiation effects , Stereoisomerism , Thymidine/radiation effects , Thymine/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...