Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Gastroenterol ; 14: 89, 2014 May 10.
Article in English | MEDLINE | ID: mdl-24884574

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is defined as a spectrum of conditions ranging from hepatocellular steatosis to steatohepatitis and fibrosis, progressing to cirrhosis, which occur in the absence of excessive alcohol use. Several animal models capture aspects of NAFLD but are limited either in their representation of the disease stages or use for development of therapeutics due to the extended periods of time required to develop full histological features. METHODS: Here, we report the development of a novel rat model for NAFLD that addresses some of these limitations. We used a fast food diet (FFD) and a CCl4 micro dose (0.5 ml/kg B.wt) for 8 weeks in Wistar rats. Serological analyses, gene expression profiling and liver histology studies were conducted to investigate the development of steatosis, steatohepatitis and fibrosis in the FFD-CCl4 model when compared to the individual effects of a FFD or a micro dose of CCl4 in rats. RESULTS: The serum biochemical profile of the FFD-CCl4 model showed an increase in liver injury and fibrosis. This was also accompanied by a significant increase in liver triglycerides (TG), inflammation and oxidative stress. Importantly, we observed extensive fibrosis confirmed by: i) increased gene expression of fibrosis markers and, ii) moderate to severe collagen deposition seen as perisinusoidal and bridging fibrosis using H&E, Trichome and Sirius Red staining. CONCLUSIONS: In summary, we find that the FFD-CCl4 rat model developed NAFLD histological features including, steatosis, inflammation and fibrosis in 8 weeks showing promise as a model that can be used to develop NAFLD therapeutics and liver anti-fibrotics.


Subject(s)
Carbon Tetrachloride/toxicity , Fast Foods/adverse effects , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/etiology , Rats, Wistar , Animals , Disease Models, Animal , Female , Gene Expression Profiling , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Rats
2.
Eur J Pharmacol ; 729: 94-9, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24530553

ABSTRACT

Polyamines are highly charged low molecular weight aliphatic polycations and are ubiquitously present in all living cells. In addition to their previously reported role in cell proliferation and cancer, recent studies support their role in energy homeostasis and glucose metabolism. In the present study we have evaluated a polyamine-spermine for its effect on glycemic, lipid and body weight parameters. High fat diet induced obese mice (6 week old male C57B6/J mice fed on high fat diet for 22 weeks) were dosed with spermine intraperitoneally at two different doses (5mg/kg and 10mg/kg body weight) for 4 weeks and its effect on body weight, glycemic and lipid parameters was monitored. We found that at a dose of 10mg/kg bodyweight, spermine treatment resulted in a 24% reduction in the body weight and 18% reduction in the fasting glucose compared to untreated controls. Besides, spermine treated mice exhibited improved glucose utilization associated with improved fat oxidation and loss of white adipose mass. Our study is promising in the direction of exploring the spermine and their analogs for treatment of metabolic syndrome.


Subject(s)
Blood Glucose/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Body Weight/physiology , Spermine/administration & dosage , Animals , Male , Mice , Mice, Inbred C57BL , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...