Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Exp Ther Med ; 14(1): 18-24, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28672888

ABSTRACT

The present study outlines the development of a method to synthesize copper nanoparticles (CuNPs) by mixing copper acetate solution with leaf extract of Eclipta prostrata without using any surfactant or external energy. E. prostrata leaf extract function as an excellent reducing agent of copper ions, and the biosynthesized CuNPs are safer for the environment. The powder X-ray diffraction (XRD) pattern provided evidence for the formation of face-centered cubic structure ranging from 23 to 57 nm, with an average size of 31±1.2 nm. Fourier transform infrared spectroscopy (FTIR) was used to identify the biomolecules and capping reagents in the E. prostrata leaf extract that may be responsible for the reduction of copper ions and the stability of the bioreduced nanoparticles. The biosynthesized CuNPs displayed considerable antioxidant capacity. Similarly, in vitro anticancer studies demonstrated the cytotoxicity value of synthesized CuNPs against tested HepG2 cells. The findings of the present study suggested that biosynthesized CuNPs that utilize extracts of E. prostrata may be used for therapeutic application, and thus are a promising nanomaterial.

2.
Malar J ; 14: 65, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25879738

ABSTRACT

BACKGROUND: Development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents. METHODS: Inspired by their ethnobotanical reputation for being effective against febrile diseases, antiplasmodial potential of ethyl acetate extracts (EAE) and methanol extracts (ME) of 17 medicinal plants collected from the Eastern Ghats of South India and Buchpora, North India were explored against Plasmodium falciparum in vitro using the SYBR Green assay. The results were validated both by confirmation that the fall in fluorescence signal was not due to quenching effects mediated by phytochemical extracts and by Giemsa-stained microscopy. RESULTS: Using EAE or ME, promising antiplasmodial activity (IC50 Pf3D7 ≤ 20 µg/ml), was seen in Aerva lanata (Whole aerial parts-EAE), Anisomeles malabarica (Leaf-EAE), Anogeissus latifolia (bark-EAE), Cassia alata (leaves-EAE), Glycyrrhiza glabra (root-EAE), Juglans regia (seed-ME), Psidium guajava (leaf-ME and EAE) and Solanum xanthocarpum (Whole aerial parts-EAE). EAEs from leaves of Couroupita guianensis, Euphorbia hirta, Pergularia daemia, Tinospora cordifolia and Tridax procumbens as also ME from Ricinus communis (leaf and seed) showed good antiplasmodial activity (Pf 3D7 IC50 21 - 40 µg/ml). Moderate activity (Pf 3D7 IC50: 40-60 µg/mL) was shown by the leaf EAEs of Cardiospermum halicacabum, Indigofera tinctoria and Ricinus communis while the remaining extracts showed marginal (Pf 3D7 IC50 60 to >100 µg/ml) activities. The promising extracts showed good resistance indices (0.41 - 1.4) against the chloroquine resistant INDO strain of P. falciparum and good selectivity indices (3 to > 22.2) when tested against the HeLa cell line. CONCLUSION: These results provide validity to the traditional medicinal usage of some of these plants and further make a case for activity-guided purification of new pharmacophores against malaria.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects , Antimalarials/toxicity , Cell Survival/drug effects , Cells, Cultured , Erythrocytes/parasitology , HeLa Cells , Humans , India , Plant Extracts/toxicity
3.
Parasitol Res ; 114(4): 1397-406, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653029

ABSTRACT

Malaria is an infectious disease caused by the Plasmodium parasite that continues to be a health issue for humans. It is one of the most common pathogenic factors of morbidity and mortality. Palladium nanoparticles (Pd NPs) have been used as target antimicrobial compounds, as a catalyst to manufacture pharmaceuticals, degrade harmful environmental pollutants, and as sensors for the detection of various analyses. The aim of this study was to investigate the antiplasmodial activity of synthesized Pd NPs by using leaf aqueous extract of Eclipta prostrata against Plasmodium berghei in Swiss albino mice. The synthesized Pd NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) with Energy dispersive X-ray spectroscopy (EDX), and High-resolution transmission electron microscope (HRTEM) with the Selected area (electron) diffraction (SAED). The XRD peaks appeared at 35.61°, 44.27°, 56.40°, and 74.51°, which correspond to (111), (200), (220), and (311) planes for palladium, respectively. The FTIR spectra that were carried out to identify the potential biomolecule of synthesized Pd NPs showed the peaks at 3361, 1540, 1399, 1257, 1049, and 659 in the region of 4000-500 cm(-1). The SEM images showed aggregation of NPs with an average size of 63 ± 1.4. The HRTEM images of the precipitated solid phase obtained after termination of the reaction of E. prostrata aqueous leaf extract were in the range from 18 to 64 nm with an average size of 27 ± 1.3 nm. The in vivo antiplasmodial assay was carried out as per Peters' 4-day suppressive test, and the synthesized Pd NP-treated mice group showed reduction of parasitemia by 78.13% with an inhibitory concentration (IC)50 value of 16.44 mg/kg/body weight. The growth inhibition of E. prostrata aqueous leaf extract, palladium acetate, and synthesized Pd NPs showed the IC20, IC50, and IC90 values of 1.90, 10.29, and 64.11; 4.49, 9.84, and 23.04; and 4.34, 8.70, and 18.49 mg/kg/body weight, respectively against NK65 strain of P. berghei. In vitro cytotoxicity of the aqueous leaf extract of E. prostrata, palladium acetate, and Pd NPs that was evaluated against Hep-G2 cell lines showed the cellular toxicity of 7.5, 12, 22, 32, and 39%; 8.2, 18, 32, 55, and 66.2 %; and 8.5, 24, 48, 65, and 76.5% at 1, 10, 100, 250, and 500 µg/mL, respectively. This green chemistry approach toward the synthesis of Pd NPs has many advantages such as, ease with which the process can be scaled up, and economic viability.


Subject(s)
Antimalarials/administration & dosage , Eclipta/chemistry , Malaria/drug therapy , Metal Nanoparticles/chemistry , Palladium/chemistry , Plant Extracts/administration & dosage , Plasmodium berghei/drug effects , Animals , Antimalarials/chemistry , Humans , Malaria/parasitology , Male , Mice , Microscopy, Electron, Scanning , Plant Extracts/chemistry , Plant Leaves/chemistry , Spectrometry, X-Ray Emission , X-Ray Diffraction
4.
Nanomaterials (Basel) ; 5(3): 1317-1330, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-28347066

ABSTRACT

Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs, especially from plants. In the present study, a simple, eco-friendly, and inexpensive approach was followed for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the aqueous leaf extract of Eclipta prostrata. The synthesized ZnO NPs were characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), High-resolution transmission electron microscopy (HRTEM), and Selected area (electron) diffraction (SAED). The HRTEM images confirmed the presence of triangle, radial, hexagonal, rod, and rectangle, shaped with an average size of 29 ± 1.3 nm. The functional groups for synthesized ZnO NPs were 3852 cm-1 for H-H weak peak, 3138 cm-1 for aromatic C-H extend, and 1648 cm-1 for Aromatic ring stretch. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), caspase and DNA fragmentation assays were carried out using various concentrations of ZnO NPs ranging from 1 to 100 mg/mL. The synthesized ZnO NPs showed dose dependent cytopathic effects in the Hep-G2 cell line. At 100 mg/mL concentration, the synthesized ZnO NPs exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays.

5.
Asian Pac J Trop Med ; 7(12): 968-76, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25479626

ABSTRACT

OBJECTIVE: To determine the efficacies of antibacterial and antioxidant activities of aqueous leaf extract of Psidium guajava mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs). METHODS: Synthesized TiO2 NPs were tested by disc diffusion method against against human pathogenic bacteria. The total antioxidant activity and phenolic content (Folin-Ciocalteau method) of synthesized TiO2 NPs and aqueous plant extract were determined. The scavenging radicals were estimated by DPPH method. The synthesized TiO2 NPs were characterized by XRD, FTIR, FESEM and EDX. RESULTS: FTIR spectra of synthesized TiO2 NPs exhibited prominent peaks at 3 410 cm(-1) (alkynes), 1 578 cm(-1), 1 451 cm(-1) (alkanes), and 1 123 cm(-1)(C-O absorption). The morphological characterization of synthesized TiO2 NPs was analysed by FESEM which showed spherical shape and clusters with an average size of 32.58 nm. The maximum zone of inhibition was observed in the synthesized TiO2 NPs (20 µg/mL) against Staphylococcus aureus (25 mm) and Escherichia coli (23 mm). The synthesized TiO2 NPs showed more antibacterial activity than the standard antibiotic disk, tetracycline which drastically reduces the chances for the development of antibiotics resistance of bacterial species. The plant aqueous extract and synthesized TiO2 NPs were found to possess maximum antioxidant activity when compared with ascorbic acid. The content of phenolic compounds (mg/g) in leaf aqueous extract and synthesized TiO2 NPs were found to be 85.4 and 18.3 mgTA/g, respectively. CONCLUSIONS: Green synthesized TiO2 NPs provides a promising approach can satisfy the requirement of large-scale industrial production bearing the advantage of low-cost, eco-friendly and reproducible.

6.
Ecotoxicol Environ Saf ; 107: 220-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25011118

ABSTRACT

The aim of the present study was to assess the oxidative stress, antioxidant response and histopathological changes of nickel nanoparticles (Ni NPs) exposure (14 days) in Mozambique tilapia, Oreochromis mossambicus. Ni NPs were synthesized by metal salt reduction method and characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The XRD peaks at 44°, 51° and 76° were indexed to the (111), (200) and (220) Bragg's reflections of cubic structure of Nickel, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 56nm. TEM images showed that the synthesized Ni NPs are spherical in shape. Biochemical analysis indicated that the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity was significantly affected by Ni NPs treated O. mossambicus. Reduced antioxidant enzymes and the contents of antioxidants were lowered in the liver and gills of fishes treated with Ni NPs. After 14 days of exposure, a significant accumulation of Ni in the Ni NPs in experimental group was observed in the gill and skin tissues, with the highest levels found in the liver. Ni NPs exposed fish showed nuclear hypertrophy (NH), nuclear degeneration (ND), necrosis (NC) and irregular-shaped nuclei were observed in liver tissue. The hyperplasia of the gill epithelium (GE), lamellar fusion of secondary lamellae (LF), dilated marginal channel (MC), epithelial lifting (EL) and epithelial rupture were observed in gill tissue. Degeneration in muscle bundles (DM), focal area of necrosis (NC) vacuolar degeneration in muscle bundles (VD), edema between muscle bundles (ED) and splitting of muscle fibers were noticed in skin tissue. Further ecotoxicological evaluation will be made concerning the risk of Ni NPs on aquatic environment.


Subject(s)
Metal Nanoparticles/toxicity , Nickel/toxicity , Oxidative Stress/drug effects , Tilapia/metabolism , Animals , Antioxidants/metabolism , Catalase/metabolism , Gills/drug effects , Liver/drug effects , Metal Nanoparticles/chemistry , Nickel/analysis , Nickel/chemistry , Superoxide Dismutase/metabolism , X-Ray Diffraction
7.
Parasitol Res ; 113(5): 1657-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24638906

ABSTRACT

Malaria is an overwhelming impact in the poorest countries in the world due to their prevalence, virulence and drug resistance ability. Currently, there is inadequate armoury of drugs for the treatment of malaria. This underscores the continuing need for the discovery and development of new effective and safe antimalarial drugs. To evaluate the in vitro and in vivo antimalarial activity of the leaf ethyl acetate extract of Murraya koenigii, bioassay-guided chromatographic fractionation was employed for the isolation and purification of antimalarial compounds. The in vitro antimalarial activity was assayed by the erythrocytic stages of chloroquine-sensitive strain of Plasmodium falciparum (3D7) in culture using the fluorescence-based SYBR Green I assay. The in vivo assay was done by administering mice infected with Plasmodium berghei (NK65) four consecutive daily doses of the extracts through oral route following Peter's 4-day curative standard test. The percentage suppression of parasitaemia was calculated for each dose level by comparing the parasitaemia in untreated control with those of treated mice. Cytotoxicity was determined against HeLa cells using MTT assay. Histopathology was studied in kidney, liver and spleen of isolated compound-treated Swiss albino mice. The leaf crude ethyl acetate extract of M. koenigii showed good in vitro antiplasmodial activity against P. falciparum. The in vivo test of the leaf crude ethyl acetate extract (600 mg/kg) showed reduced malaria parasitaemia by 86.6% against P. berghei in mice. Bioassay-guided fractionation of the leaf ethyl acetate extract of M. koenigii led to the isolation of two purified fractions C3B2 (2.84 g) and C3B4 (1.97 g). The purified fractions C3B2 and C3B4 were found to be active with IC50 values of 10.5 ± 0.8 and 8.25 ± 0.2 µg/mL against P. falciparum, and in vivo activity significantly reduced parasitaemia by 82.6 and 88.2% at 100 mg/kg/body weight on day 4 against P. berghei, respectively. The isolated fractions C3B2 and C3B4 were monitored by thin-layer chromatography until a single spot was obtained with R f values of 0.36 and 0.52, respectively. The pure compounds obtained in the present investigation were subjected to UV-visible spectroscopy, Fourier transformer infrared spectroscopy, 1D and 2D (1)H-Nuclear magnetic resonance (NMR), (13)C NMR, DEPT, COSY and Mass spectral analysis. Based on the spectral analysis, it is concluded that the isolated compounds were myristic acid (C3B2) and ß-caryophyllene (C3B4). The cytotoxic effect of myristic acid and ß-caryophyllene showed the TC50 values of >100 and 80.5 µg/mL, respectively against HeLa cell line. The histopathology study showed that protection against nephrotoxicity of kidney, hepatic damage of liver and splenocytes protection in spleen was achieved with the highest dose tested at 100 mg/kg/body weight. The present study provides evidence of antiplasmodial compounds from M. koenigii and is reported for the first time.


Subject(s)
Antimalarials/pharmacology , Murraya/chemistry , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Female , HeLa Cells , Humans , Malaria/drug therapy , Male , Mice , Myristic Acid/isolation & purification , Plant Extracts/chemistry , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes/isolation & purification
8.
Bioprocess Biosyst Eng ; 37(8): 1591-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24525832

ABSTRACT

In the present study, we report rapid biological synthesis of gold nanoparticles (Au NPs) using a novel marine brown alga Ecklonia cava (Family: Lessoniaceae) by the reduction of chloroauric acid. The formation of Au NPs reaction was complete within 1 min at 80 °C and physiochemically characterized with different analytical techniques. FTIR spectroscopy revealed that Au NPs were functionalized with biomolecules that have primary amine group, hydroxyl group and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au NPs. Microscopy results showed that these Au NPs are formed with shapes like spherical and triangular with an average size of 30 ± 0.25 nm. Synthesized Au NPs showed good antimicrobial and biocompatibility with human keratinocyte cell line. Thus, physiochemical characteristic results suggest that Au NPs will have promising biomedical applications in different area such as drug delivery, tissue engineering, biosensor, etc.


Subject(s)
Chlorides/chemistry , Gold Compounds/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Oxidation-Reduction , Particle Size , Phaeophyceae
9.
Parasitol Res ; 113(2): 469-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24265057

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in paints, printing ink, rubber, paper, cosmetics, sunscreens, car materials, cleaning air products, industrial photocatalytic processes, and decomposing organic matters in wastewater due to their unique physical, chemical, and biological properties. The present study was conducted to assess the antiparasitic efficacies of synthesized TiO2 NPs utilizing leaf aqueous extract of Solanum trilobatum against the adult head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae); larvae of cattle tick Hyalomma anatolicum (a.) anatolicum Koch (Acari: Ixodidae), and fourth instar larvae of malaria vector Anopheles subpictus Grassi (Diptera: Culicidae). The green synthesized TiO2 NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy analysis (EDX), and Atomic force microscopy (AFM). XRD analysis of synthesized TiO2 NPs revealed that the particles were in the form of nanocrystals as evidenced by the major peaks at 2θ values of 27.52°, 36.21°, and 54.43° identified as 110, 101, and 211 reflections, respectively. FTIR spectra exhibited a prominent peak at 3,466 cm(-1) and showed OH stretching due to the alcoholic group, and the OH group may act as a capping agent. SEM images displayed NPs that were spherical, oval in shape, individual, and some in aggregates with an average size of 70 nm. Characterization of the synthesized TiO2 NPs using AFM offered a three-dimensional visualization and uneven surface morphology. The pediculocidal and acaricidal activities of synthesized TiO2 NPs showed the percent mortality of 31, 42, 63, 82, 100; 36, 44, 67, 89, and 100 at 2, 4, 6, 8, and 10 mg/L, respectively, against P. h. capitis and H. a. anatolicum. The average larval percent mortality of synthesized TiO2 NPs was 38, 47, 66, 79, and 100 at 1, 2, 3, 4, and 5 mg/L, respectively, against A. subpictus. The maximum activity was observed in the aqueous leaf extract of S. trilobatum, TiO(OH)2 solutions (bulk), and synthesized TiO2 NPs with LC50 values of 35.14, 25.85, and 4.34 mg/L; 47.15, 29.78, and 4.11 mg/L; and 28.80, 24.01, and 1.94 mg/L, and r (2) values of 0.982, 0.991, and 0.992; 0.947, 0.987, and 0.997; and 0.965, 0.998 and 0.985, respectively, against P. h. capitis, H. a. anatolicum, and A. subpictus. This study provides the first report on the pediculocidal, acaricidal, and larvicidal activity of synthesized TiO2 NPs. This is an ideal eco-friendly, novel, low-cost, and simple approach to satisfy the requirement of large-scale industrial production bearing the advantage for the control of P. h. capitis, H. a. anatolicum, and A. subpictus.


Subject(s)
Anopheles/drug effects , Ixodidae/drug effects , Metal Nanoparticles , Pediculus/drug effects , Plant Extracts/metabolism , Solanum/chemistry , Titanium/pharmacology , Acaricides/pharmacology , Animals , Cattle , Humans , Insecticides/pharmacology , Larva/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Parasitic Sensitivity Tests , Plant Leaves/chemistry , Spectrometry, X-Ray Emission , X-Ray Diffraction
10.
Parasitol Res ; 112(12): 4105-12, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24013343

ABSTRACT

The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.


Subject(s)
Bacillus thuringiensis/metabolism , Cobalt/chemistry , Insecticides/chemistry , Metal Nanoparticles/chemistry , Mosquito Control , Aedes , Animals , Anopheles , Cobalt/pharmacology , Culicidae/drug effects , Insect Vectors/drug effects , Insecticides/pharmacology , Larva/drug effects
11.
Asian Pac J Trop Med ; 6(9): 682-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23827143

ABSTRACT

OBJECTIVE: To assess the acaricidal activity of titanium dioxide nanoparticles (TiO2 NPs) synthesized from flower aqueous extract of Calotropis gigantea(C. gigantea) against the larvae of Rhipicephalus (Boophilus) microplus [R. (B.) microplus] and the adult of Haemaphysalis bispinosa (H. bispinosa). METHODS: The lyophilized C. gigantea flower aqueous extract of 50 mg was added with 100 mL of TiO(OH)2 (10 mM) and magnetically stirred for 6 h. Synthesized TiO2 NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDX). The synthesised TiO2 NPs were tested against the larvae of R. (B.) microplus and adult of H. bispinosa were exposed to filter paper impregnated method. RESULTS: XRD confirmed the crystalline nature of the nanoparticles with the mean size of 10.52 nm. The functional groups for synthesized TiO2 NPs were 1 405.19, and 1 053.45 cm(-1) for -NH2 bending, primary amines and amides and 1 053.84 and 1 078.45 cm(-1) for C-O. SEM micrographs of the synthesized TiO2 NPs showed the aggregated and spherical in shape. The maximum efficacy was observed in the aqueous flower extract of C. gigantea and synthesized TiO2 NPs against R. (B.) microplus (LC50=24.63 and 5.43 mg/L and r(2)=0.960 and 0.988) and against H. bispinosa (LC50= 35.22 and 9.15 mg/L and r(2) = 0.969 and 0.969), respectively. CONCLUSIONS: The synthesized TiO2 NPs were highly stable and had significant acaricidal activity against the larvae of R. (B.) microplus and adult of H. bispinosa. This study provides the first report of synthesized TiO2 NPs and possessed excellent anti-parasitic activity.


Subject(s)
Acaricides/pharmacology , Calotropis/chemistry , Ixodidae/drug effects , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Rhipicephalus/drug effects , Titanium/pharmacology , Acaricides/chemical synthesis , Acaricides/chemistry , Animals , Female , Flowers/chemistry , Ixodidae/growth & development , Male , Particle Size , Plant Extracts/chemistry , Rhipicephalus/growth & development , Titanium/chemistry
12.
Asian Pac J Trop Med ; 6(2): 95-101, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23339909

ABSTRACT

OBJECTIVE: To investigate the larvicidal activity of synthesized silver nanoparticles (Ag NPs) utilizing aqueous bark extract of Ficus racemosa (F. racemosa) was tested against fourth instar larvae of filariasis vector, Culex quinquefasciatus (Cx. quinquefasciatus) and japanese encephalitis vectors, Culex gelidus (Cx. gelidus). METHODS: The synthesized Ag NPs was characterized by UV-vis spectrum, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). The larvicidal activities were assessed for 24 h against the larvae of Cx. quinquefasciatus and Cx. gelidus with varying concentrations of aqueous bark extract of F. racemosa and synthesized Ag NPs. LC(50) and r(2) values were calculated. RESULTS: The maximum efficacy was observed in crude aqueous extract of F. racemosa against the larvae of Cx. quinquefasciatus and Cx. gelidus (LC(50)=67.72 and 63.70 mg/L; r(2)=0.995 and 0.985) and the synthesized Ag NPs (LC(50)=12.00 and 11.21 mg/L; r(2)=0.997 and 0.990), respectively. Synthesized Ag NPs showed the XRD peaks at 2 θ values of 27.61, 29.60, 35.48, 43.48 and 79.68 were identified as (210), (121), (220), (200) and (311) reflections, respectively. The FTIR spectra of Ag NPs exhibited prominent peaks at 3,425, 2,878, 1,627 and 1,382 in the region 500-3,000 cm(-1). The peaks correspond to the presence of a stretching vibration of (NH) C=O group. SEM analysis showed shape in cylindrical, uniform and rod with the average size of 250.60 nm. CONCLUSIONS: The biosynthesis of silver nanoparticles using bark aqueous extract of F. racemosa and its larvicidal activity against the larvae of disease spreading vectors. The maximum larvicidal efficacy was observed in the synthesized Ag NPs.


Subject(s)
Culex/drug effects , Ficus/chemistry , Insecticides/pharmacology , Metal Nanoparticles/administration & dosage , Plant Extracts/pharmacology , Silver/pharmacology , Animals , Green Chemistry Technology , Insecticides/chemical synthesis , Insecticides/chemistry , Larva/drug effects , Metal Nanoparticles/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Silver/chemistry , Spectrum Analysis
13.
Vet Parasitol ; 191(3-4): 332-9, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23040768

ABSTRACT

The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni NPs) against the larvae of cattle ticks Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum (a.) anatolicum (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, Culex quinquefasciatus and Culex gelidus (Diptera: Culicidae). The metallic Ni NPs were synthesized by polyol process from Ni-hydrazine as precursor and Tween 80 as both the medium and the stabilizing reagent. The synthesized Ni NPs were characterized by Fourier transform infrared (FTIR) spectroscopy analysis which indicated the presence of Ni NPs. Synthesized Ni NPs showed the X-ray diffraction (XRD) peaks at 42.76°, 53.40°, and 76.44°, identified as 111, 220, and 200 reflections, respectively. Scanning electron microscopy (SEM) analysis of the synthesized Ni NPs clearly showed that the Ni NPs were spherical in shape with an average size of 150 nm. The Ni NPs showed maximum activity against the larvae of R. (B.) microplus, H. a. anatolicum, A. subpictus, C. quinquefasciatus and C. gelidus with LC(50) values of 10.17, 10.81, 4.93, 5.56 and 4.94 mg/L; r(2) values of 0.990, 0.993, 0.992, 0.950 and 0.988 and the efficacy of Ni-hydrazine complexes showed the LC(50) values of 20.35, 22.72, 8.29, 9.69 and 7.83 mg/L; r(2) values of 0.988, 0.986, 0.989, 0.944 and 0.978, respectively. The findings revealed that synthesized Ni NPs possess excellent larvicidal parasitic activity. To the best of our knowledge, this is the first report on larvicidal activity of blood feeding parasites using synthesized Ni NPs.


Subject(s)
Antiparasitic Agents/pharmacology , Culicidae/drug effects , Ixodidae/drug effects , Metal Nanoparticles , Nickel/pharmacology , Animals , Larva/drug effects , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Exp Parasitol ; 132(2): 156-65, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22750410

ABSTRACT

The present study was to determine the efficacies of anti-parasitic activities of synthesized silver nanoparticles (Ag NPs) using stem aqueous extract of Cissus quadrangularis against the adult of hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and the larvae of cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Contact toxicity method was followed to determine the potential of parasitic activity. Twelve milliliters of stem aqueous extract of C. quadrangularis was treated with 88 ml of 1mM silver nitrate (AgNO(3)) solution at room temperature for 30 min and the resulting solution was yellow-brown color indicating the formation extracellular synthesis of Ag NPs. The synthesized Ag NPs were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The synthesized Ag NPs were recorded by UV-visible spectrum at 420 nm and XRD patterns showed the nanoparticles crystalline in nature. FTIR analysis confirmed that the bioreduction of Ag((+)) ions to Ag NPs were due to the reduction by capping material of plant extract. FESEM image of Ag NPs showed spherical and oval in shape. By using the Bragg's Law and Scherrer's constant, the average mean size of synthesized Ag NPs was 42.46 nm. The spot EDX analysis showed the complete chemical composition of the synthesized Ag NPs. The mortality obtained by the synthesized Ag NPs from the C. quadrangularis was more effective than the aqueous extract of C. quadrangularis and AgNO(3) solution (1 mM). The adulticidal activity was observed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the adult of H. maculata with LC(50) values of 37.08, 40.35 and 6.30 mg/L; LC(90) values of 175.46, 192.17 and 18.14 mg/L and r(2) values of 0.970, 0.992 and 0.969, respectively. The maximum efficacy showed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the larvae of R. (B.) microplus with LC(50) values of 50.00, 21.72 and 7.61 mg/L; LC(90) values of 205.12, 82.99 and 22.68 mg/L and r(2) values of 0.968, 0.945 and 0.994, respectively. The present study is the first report on antiparasitic activity of the experimental plant extract and synthesized Ag NPs. This is an ideal eco-friendly and inexpensive approach for the control of H. maculata and R. (B.) microplus.


Subject(s)
Cissus/chemistry , Diptera/drug effects , Plant Extracts/pharmacology , Rhipicephalus/drug effects , Animals , Biological Assay , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/parasitology , Ectoparasitic Infestations/drug therapy , Ectoparasitic Infestations/veterinary , Female , Larva/drug effects , Lethal Dose 50 , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning/methods , Plant Extracts/therapeutic use , Plant Stems/chemistry , Silver , Silver Nitrate , Solutions , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Tick Infestations/drug therapy , Tick Infestations/veterinary , X-Ray Diffraction
15.
J Ethnopharmacol ; 141(3): 796-802, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22433533

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: An ethnopharmacological investigation of medicinal plants traditionally used to treat diseases associated with fevers in Dharmapuri region of South India was undertaken. Twenty four plants were identified and evaluated for their in vitro activity against Plasmodium falciparum and assessed for cytotoxicity against HeLa cell line. AIM OF THE STUDY: This antimalarial in vitro study was planned to correlate and validate the traditional usage of medicinal plants against malaria. MATERIALS AND METHODS: An ethnobotanical survey was made in Dharmapuri region, Tamil Nadu, India to identify plants used in traditional medicine against fevers. Selected plants were extracted with ethyl acetate and methanol and evaluated for antimalarial activity against erythrocytic stages of chloroquine (CQ)-sensitive 3D7 and CQ-resistant INDO strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green I assay. Cytotoxicity was determined against HeLa cells using MTT assay. RESULTS: Promising antiplasmodial activity was found in Aegle marmelos [leaf methanol extract (ME) (IC(50)=7 µg/mL] and good activities were found in Lantana camara [leaf ethyl acetate extract (EAE) IC(50)=19 µg/mL], Leucas aspera (flower EAE IC(50)=12.5 µg/mL), Momordica charantia (leaf EAE IC(50)=17.5 µg/mL), Phyllanthus amarus (leaf ME IC(50)=15 µg/mL) and Piper nigrum (seed EAE IC(50)=12.5 µg/mL). The leaf ME of Aegle marmelos which showed the highest activity against Plasmodium falciparum elicited low cytotoxicity (therapeutic index>13). CONCLUSION: These results provide validation for the traditional usage of some medicinal plants against malaria in Dharmapuri region, Tamil Nadu, India.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal , Plasmodium falciparum/drug effects , Cell Survival/drug effects , Female , HeLa Cells , Health Surveys , Humans , India , Male , Medicine, Traditional , Middle Aged
16.
Parasitol Res ; 111(6): 2329-37, 2012 Dec.
Article in English | MEDLINE | ID: mdl-21987105

ABSTRACT

The purpose of the present study was based on assessments of the antiparasitic activities of synthesized titanium dioxide nanoparticles (TiO(2) NPs) utilizing leaf aqueous extract of Catharanthus roseus against the adults of hematophagous fly, Hippobosca maculata Leach (Diptera: Hippoboscidae), and sheep-biting louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). The synthesized TiO(2) NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The formation of the TiO(2) NPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of titanium particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.43°, 36.03°, and 54.32°. The FTIR spectra of TiO(2) NPs exhibited prominent peaks at 714 (Ti-O-O bond), 1,076 (C-N stretch aliphatic amines), 1,172 (C-O stretching vibrations in alcoholic groups), 1,642 (N-H bend bond), and 3,426 (O-H stretching due to alcoholic group). SEM analysis of the synthesized TiO(2) NPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-110 nm. By Bragg's law and Scherrer's constant, it is proved that the mean size of synthesized TiO(2) NPs was 65 nm. The AFM obviously depicts the formation of the rutile and anatase forms in the TiO(2) NPs and also, the surface morphology of the particles is uneven due to the presence of some of the aggregates and individual particles. Adulticidal parasitic activity was observed in varying concentrations of aqueous leaf extract of C. roseus, TiO(2) solution, and synthesized TiO(2) NPs for 24 h. The maximum parasitic activity was observed in aqueous crude leaf extracts of C. roseus against the adults of H. maculata and B. ovis with LD(50) values of 36.17 and 30.35 mg/L, and r (2) values of 0.948 and 0.908, respectively. The highest efficacy was reported in 5 mM TiO(2) solution against H. maculata and B. ovis (LD(50) = 33.40 and 34.74 mg/L; r (2) = 0.786 and 0.873), respectively, and the maximum activity was observed in the synthesized TiO(2) NPs against H. maculata and B. ovis with LD(50) values of LD(50) = 7.09 and 6.56 mg/L, and r (2) values of 0.880 and 0.913, respectively. This method is considered as an innovative alternative approach to control the hematophagous fly and sheep-biting louse.


Subject(s)
Catharanthus/metabolism , Diptera/drug effects , Insecticides/metabolism , Ischnocera/drug effects , Nanoparticles , Plant Extracts/metabolism , Titanium/metabolism , Animals , Biological Assay , Insecticides/chemistry , Insecticides/pharmacology , Lethal Dose 50 , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Plant Leaves/metabolism , Spectroscopy, Fourier Transform Infrared , Survival Analysis , Titanium/chemistry , Titanium/pharmacology , X-Ray Diffraction
17.
Parasitol Res ; 111(2): 921-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21638210

ABSTRACT

The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 µl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg/l for 24 h against the larvae of H. bispinosa and Hip. maculata, respectively. The maximum efficacy was observed in the aqueous extract of M. paradisiaca against the H. bispinosa, Hip. maculata, and the larvae of A. stephensi, C. tritaeniorhynchus with LC(50) values of 28.96, 31.02, 26.32, and 20.10 mg/lm, respectively (r (2) = 0.990, 0.968, 0.974, and 0.979, respectively). The synthesized AgNPs of M. paradisiaca showed the LC(50) and r (2) values against H. bispinosa, (1.87 mg/l; 0.963), Hip. maculata (2.02 mg/l; 0.976), and larvae of A. stephensi (1.39; 0.900 mg/l), against C. tritaeniorhynchus (1.63 mg/l; 0.951), respectively. The χ (2) values were significant at p < 0.05 level.


Subject(s)
Acaricides/pharmacology , Insecta/drug effects , Ixodidae/drug effects , Metal Nanoparticles/chemistry , Musa/metabolism , Silver/pharmacology , Acaricides/chemistry , Animals , Fruit , Larva/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry
18.
Parasitol Res ; 111(5): 2023-33, 2012 Nov.
Article in English | MEDLINE | ID: mdl-21993881

ABSTRACT

In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synthesis of silver nanoparticles (Ag NPs) using leaf aqueous extract of Lawsonia inermis as eco-friendly reducing and capping agent. The aim of the present study was to assess the lousicidal activity of synthesized Ag NPs against human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), and sheep body louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). Direct contact method was conducted to determine the potential of pediculocidal activity and impregnated method was used with slight modifications to improve practicality and efficiency of tested materials of synthesized Ag NPs against B. ovis. The synthesized Ag NPs characterized with the UV showing peak at 426 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the silver with lattice constants. XRD analysis showed intense peaks at 2θ values of 38.34°, 44.59°, 65.04°, and 77.77° corresponding to (111), (200), (220), and (311) Bragg's reflection based on the fcc structure of Ag NPs. Fourier transform infrared spectroscopy (FTIR) spectra of Ag NPs exhibited prominent peaks at 3,422.13, 2,924.12, 2,851.76, 1,631.41, 1,381.60, 1,087.11, and 789.55 cm(-1). Scanning electron microscopy (SEM) micrograph showed mean size of 59.52 nm and aggregates of spherical shape Ag NPs. Energy dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized Ag NPs. In pediculocidal activity, the results showed that the optimal times for measuring percent mortality effects of synthesized Ag NPs were 26, 61, 84, and 100 at 5, 10, 15, and 20 min, respectively. The average percent mortality for synthesized Ag NPs was 33, 84, 91, and 100 at 10, 15, 20, and 35 min, respectively against B. ovis. The maximum activity was observed in the aqueous leaf extract of L. inermis, 1 mM AgNO(3) solution, and synthesized Ag NPs against P. humanus capitis with LC(50) values of 18.26, 7.77, and 1.33 mg l(-1) and r (2) values of 0.863, 0.900, and 0.803 and against B. ovis showed with LC(50) values of 21.19, 8.49, and 1.41 mg l(-1) and r (2) values of 0.920, 0.938 and 0.870, respectively. The findings revealed that synthesized Ag NPs possess excellent anti-lousicidal activity.


Subject(s)
Insecticides/pharmacology , Ischnocera/drug effects , Lawsonia Plant/metabolism , Nanoparticles , Pediculus/drug effects , Silver/pharmacology , Animals , Insecticides/isolation & purification , Microscopy, Electron, Scanning , Parasitic Sensitivity Tests , Plant Extracts/metabolism , Plant Leaves/metabolism , Silver/chemistry , Silver/metabolism , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Survival Analysis , X-Ray Diffraction
19.
Parasitol Res ; 111(4): 1833-40, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21861064

ABSTRACT

The aim of the present study was to investigate the adulticidal and larvicidal activity of dried leaf hexane, ethyl acetate, acetone, and methanol extracts of Nelumbo nucifera, Manilkara zapota, Ipomoea staphylina, and Acalypha indica against the adults of Haemaphysalis bispinosa (Acarina: Ixodidae), hematophagous fly Hippobosca maculata (Diptera: Hippoboscidae), and fourth instar larvae of malaria vector Anopheles subpictus (Diptera: Culicidae). Parasites were exposed to varying concentrations of plant extracts for 24 h. All extracts showed moderate parasitic effects; however, the percent parasitic mortality observed in the crude leaf hexane, ethyl acetate, acetone, and methanol extracts of N. nucifera and M. zapota against H. bispinosa were 80, 74, 72, and 100 and 100, 83, 74, and 91, respectively, and the activity for I. staphylina and A. indica against Hip. maculata were 100, 93, 87, and 66 and 78, 90, 87, and 100 at 2,000 ppm, respectively; the larvicidal activity for the same extracts of I. staphylina against A. subpictus were 76, 82, 84, and 100 at 100 ppm, respectively. The maximum efficacy was observed in the leaf methanol extract of N. nucifera, hexane extract of M. zapota and leaf hexane extract of I. staphylina, and methanol extract of A. indica against the adults of H. bispinosa and Hip. maculata with LC(50) and LC(90) values of 437.14 and 200.81, and 415.14 and 280.72 ppm, 1,927.57 and 703.52 ppm, and 1,647.70 and 829.39 ppm, respectively. The effective larvicidal activity was observed in leaf methanol extract of I. staphylina against A. subpictus with LC(50) and LC(90) values of 10.39 and 37.71 ppm, respectively. Therefore, this study provides the first report on the adulticidal and larvicidal activity of crude solvent extracts. This is an ideal eco-friendly approach for the control of H. bispinosa, Hip. maculata, and the medically important vector A. subpictus.


Subject(s)
Diptera/drug effects , Ferns/chemistry , Insecticides/pharmacology , Ixodidae/drug effects , Plant Extracts/pharmacology , Animals , Insecticides/isolation & purification , Larva/drug effects , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Survival Analysis
20.
Parasitol Res ; 109(5): 1329-40, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21541752

ABSTRACT

The head lice, Pediculus humanus capitis De Geer is an obligate ectoparasite of humans that causes pediculosis capitis, a nuisance for millions of people worldwide, with high prevalence in children. P. humanus capitis has been treated by methods that include the physical remotion of lice, various domestic treatments, and conventional insecticides. None of these methods render complete protection, and there is clear evidence for the evolution of resistance and cross-resistance to conventional insecticides. Non-toxic alternative options are hence needed for head lice treatment and/or prevention, and natural products from plants are good candidates for safer control agents that may provide good anti-lice activity. The plant extracts are good and safe alternatives due to their low toxicity to mammals and easy biodegradability. The present study carried out the pediculocidal activity using the hexane flower bud extract of Syzygium aromaticum (Myrtaceae) against P. humanus capitis examined by direct contact and fumigant toxicity (closed- and open-container methods) bioassay. The chemical composition of S. aromaticum flower bud hexane extract was analyzed by gas chromatography-mass spectrometry. The major chemical constituent (58.79%) of flower bud hexane extract S. aromaticum was identified as chavibetol (5-allyl-2-methoxyphenol) by comparison of mass spectral data and retention times. The hexane extract of S. aromaticum was subjected to gas chromatography analysis, and totally 47 compounds were detected, of which chavibetol was predominantly present. The other major constituents present in the hexane extract were eugenol acetate (phenol,2-methoxy-4-(2-propenyl)-,acetate (15.09%), caryophyllene-(I1) (2,6,10,10-tetramethyl bicyclo [7.2.0] undeca-1,6-diene (13.75%), caryophyllene oxide (3.04%), 2,6,6,9-tetramethyl-1,4,8-cycloundecatriene (1.67%), and copaene (1.33%). The filter paper contact bioassay study showed pronounced pediculicidal activity in the flower bud hexane extract of S. aromaticum. The toxic effect was determined for every five in an 80-min treatment. The result showed percent mortality of 40, 82, and 100 at 5, 10, and 20 min, and the median lethal time (LT(50)) value was 5.83 (0.5 mg/cm(2)); 28, 82, and 100 at 5, 10, and 30 min. (LT(50) = 6.54; 0.25 mg/cm(2)); and 13, 22, 42, 80, and 100 at 5, 10, 20, 40, and 80 min (LT(50) = 18.68; 0.125 mg/cm(2)), respectively. The vapor phase toxicity was tested at 0.25 mg/cm(2). There was a significant difference in pediculicidal activity of S. aromaticum extract against P. humanus capitis between closed- and open-container methods. Adult mortalities were determined for every five in 60 min (closed method) and for every ten in 180 min (open method). The closed method showed the percent mortality was 45, 88, and 100 at 5, 10, and 15 min (LT(50) = 5.39), respectively. In the open-container method, the percent mortality was observed 5, 20, 47, 84, and 100 at 10, 20, 60, 120, and 180 min (LT(50) = 47.91), respectively. The mortality was more effective in the closed containers than in open ones, indicating that the effect of hexane extract was largely a result of action in the vapor phase exhibited fumigant toxicity. Studies of anti-lice activity of extract provide the basis for preliminary conclusions of structure activity relationships; although no clear patterns can yet be drawn. We here attempt to provide a concise compilation of the available information on anti-lice activity of plant extracts and plant-derived compounds.


Subject(s)
Insecticides/pharmacology , Pediculus/drug effects , Plant Extracts/pharmacology , Syzygium/chemistry , Animals , Biological Assay , Flowers/chemistry , Fumigation , Gas Chromatography-Mass Spectrometry , Insecticides/administration & dosage , Insecticides/chemistry , Insecticides/isolation & purification , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Shoots/chemistry , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...