Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38067651

ABSTRACT

This comprehensive review investigates the potential of aluminum oxide (Al2O3) as a highly effective adsorbent for organic dye degradation. Al2O3 emerges as a promising solution to address environmental challenges associated with dye discharge due to its solid ceramic composition, robust mechanical properties, expansive surface area, and exceptional resistance to environmental degradation. The paper meticulously examines recent advancements in Al2O3-based materials, emphasizing their efficacy in both organic dye degradation and adsorption. Offering a nuanced understanding of Al2O3's pivotal role in environmental remediation, this review provides a valuable synthesis of the latest research developments in the field of dye degradation. It serves as an insightful resource, emphasizing the significant potential of aluminum oxide in mitigating the pressing environmental concerns linked to organic dye discharge. The application of Al2O3-based catalysts in the photocatalytic treatment of multi-component organic dyes necessitates further exploration, particularly in addressing real-world wastewater complexities.

2.
Polymers (Basel) ; 15(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37299364

ABSTRACT

This review examines the mechanical performance of metal- and polymer-based composites fabricated using additive manufacturing (AM) techniques. Composite materials have significantly influenced various industries due to their exceptional reliability and effectiveness. As technology advances, new types of composite reinforcements, such as novel chemical-based and bio-based, and new fabrication techniques are utilized to develop high-performance composite materials. AM, a widely popular concept poised to shape the development of Industry 4.0, is also being utilized in the production of composite materials. Comparing AM-based manufacturing processes to traditional methods reveals significant variations in the performance of the resulting composites. The primary objective of this review is to offer a comprehensive understanding of metal- and polymer-based composites and their applications in diverse fields. Further on this review delves into the intricate details of metal- and polymer-based composites, shedding light on their mechanical performance and exploring the various industries and sectors where they find utility.

3.
Materials (Basel) ; 14(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34442990

ABSTRACT

Filled hybrid composites are widely used in various structural applications where machining is critical. Hence, it is essential to understand the performance of the fibre composites' machining behaviour. As such, a new hybrid structural composite was fabricated with redmud as filler and sisal fibre as reinforcement in polyester matrix. The composite was then tested for its drilling performance. A comprehensive drilling experiment was conducted using Taguchi L27 orthogonal array. The effect of the drill tool point angle, the cutting speed, the feed rate on thrust force, delamination, and burr formation were analysed for producing quality holes. The significance of each parameter was analysed, and the experimental outcomes revealed some important findings in the context of the drilling behaviour of sisal fibre/polyester composites with redmud as a filler. Spindle speed contributed 39% in affecting the thrust force, while the feed rate had the maximum influence of ca. 38% in affecting delamination.

SELECTION OF CITATIONS
SEARCH DETAIL
...