Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 24(1): 64-77, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34383057

ABSTRACT

BACKGROUND: Response to targeted therapy varies between patients for largely unknown reasons. Here, we developed and applied an integrative platform using mass spectrometry imaging (MSI), phosphoproteomics, and multiplexed tissue imaging for mapping drug distribution, target engagement, and adaptive response to gain insights into heterogeneous response to therapy. METHODS: Patient-derived xenograft (PDX) lines of glioblastoma were treated with adavosertib, a Wee1 inhibitor, and tissue drug distribution was measured with MALDI-MSI. Phosphoproteomics was measured in the same tumors to identify biomarkers of drug target engagement and cellular adaptive response. Multiplexed tissue imaging was performed on sister sections to evaluate spatial co-localization of drug and cellular response. The integrated platform was then applied on clinical specimens from glioblastoma patients enrolled in the phase 1 clinical trial. RESULTS: PDX tumors exposed to different doses of adavosertib revealed intra- and inter-tumoral heterogeneity of drug distribution and integration of the heterogeneous drug distribution with phosphoproteomics and multiplexed tissue imaging revealed new markers of molecular response to adavosertib. Analysis of paired clinical specimens from patients enrolled in the phase 1 clinical trial informed the translational potential of the identified biomarkers in studying patient's response to adavosertib. CONCLUSIONS: The multimodal platform identified a signature of drug efficacy and patient-specific adaptive responses applicable to preclinical and clinical drug development. The information generated by the approach may inform mechanisms of success and failure in future early phase clinical trials, providing information for optimizing clinical trial design and guiding future application into clinical practice.


Subject(s)
Glioblastoma , Pharmaceutical Preparations , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Humans
2.
Neuro Oncol ; 23(12): 2042-2053, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34050676

ABSTRACT

BACKGROUND: Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS: PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS: Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS: Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunoconjugates , Pharmaceutical Preparations , Antibodies, Monoclonal, Humanized , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Humans
3.
Front Physiol ; 11: 830, 2020.
Article in English | MEDLINE | ID: mdl-32973540

ABSTRACT

Many drugs investigated for the treatment of glioblastoma (GBM) have had disappointing clinical trial results. Efficacy of these agents is dependent on adequate delivery to sensitive tumor cell populations, which is limited by the blood-brain barrier (BBB). Additionally, tumor heterogeneity can lead to subpopulations of cells with different sensitivities to anti-cancer drugs, further impacting therapeutic efficacy. Thus, it may be important to evaluate the extent to which BBB limitations and heterogeneous sensitivity each contribute to a drug's failure. To address this challenge, we developed a minimal mathematical model to characterize these elements of overall drug response, informed by time-series bioluminescence imaging data from a treated patient-derived xenograft (PDX) experimental model. By fitting this mathematical model to a preliminary dataset in a series of nonlinear regression steps, we estimated parameter values for individual PDX subjects that correspond to the dynamics seen in experimental data. Using these estimates as a guide for parameter ranges, we ran model simulations and performed a parameter sensitivity analysis using Latin hypercube sampling and partial rank correlation coefficients. Results from this analysis combined with simulations suggest that BBB permeability may play a slightly greater role in therapeutic efficacy than relative drug sensitivity. Additionally, we discuss recommendations for future experiments based on insights gained from this model. Further research in this area will be vital for improving the development of effective new therapies for glioblastoma patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...