Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923116

ABSTRACT

Clinical guidelines promote the identification of several targetable biomarkers to drive treatment decisions in advanced non-small cell lung cancer (NSCLC), but half of all patients do not have a viable biopsy. Specimens from endobronchial-ultrasound transbronchial needle aspiration (EBUS-TBNA) are an alternative source of material for the initial diagnosis of NSCLC, however their usefulness for a complete molecular characterization remains controversial. EBUS-TBNA samples were prospectively tested for several biomarkers by next-generation sequencing (NGS), nCounter, and immunohistochemistry (PD-L1). The primary objectives were to assess the sensitivity of EBUS-TBNA samples for a comprehensive molecular characterization and to compare its performance to the reference standard of biopsy samples. Seventy-two EBUS-TBNA procedures were performed, and 42 NSCLC patients were diagnosed. Among all cytological samples, 92.9% were successfully genotyped by NGS, 95.2% by nCounter, and 100% by immunohistochemistry. There were 29 paired biopsy samples; 79.3% samples had enough tumor material for genomic genotyping, and 96.6% for PD-L1 immunohistochemistry. A good concordance was found between both sources of material: 88.9% for PD-L1, 100% for NGS and nCounter. EBUS-TBNA is a feasible alternative source of material for NSCLC genotyping and allows the identification of patient candidates for personalized therapies with high concordance when compared with biopsy.

2.
Mol Oncol ; 15(2): 350-363, 2021 02.
Article in English | MEDLINE | ID: mdl-33236532

ABSTRACT

MET inhibitors have shown activity in non-small-cell lung cancer patients (NSCLC) with MET amplification and exon 14 skipping (METΔex14). However, patient stratification is imperfect, and thus, response rates have varied widely. Here, we studied MET alterations in 474 advanced NSCLC patients by nCounter, an RNA-based technique, together with next-generation sequencing (NGS), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and reverse transcriptase polymerase chain reaction (RT-PCR), exploring correlation with clinical benefit. Of the 474 samples analyzed, 422 (89%) yielded valid results by nCounter, which identified 13 patients (3%) with METΔex14 and 15 patients (3.5%) with very-high MET mRNA expression. These two subgroups were mutually exclusive, displayed distinct phenotypes and did not generally coexist with other drivers. For METΔex14, 3/8 (37.5%) samples positive by nCounter tested negative by NGS. Regarding patients with very-high MET mRNA, 92% had MET amplification by FISH and/or NGS. However, FISH failed to identify three patients (30%) with very-high MET RNA expression, among which one received MET tyrosine kinase inhibitor treatment deriving clinical benefit. Our results indicate that quantitative mRNA-based techniques can improve the selection of patients for MET-targeted therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Proto-Oncogene Proteins c-met , RNA, Messenger , RNA, Neoplasm , Sequence Analysis, RNA , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Proto-Oncogene Proteins c-met/biosynthesis , Proto-Oncogene Proteins c-met/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics
3.
Diagnostics (Basel) ; 10(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153192

ABSTRACT

Targeted therapies are a new paradigm in lung cancer management. Next-generation sequencing (NGS) techniques have allowed for simultaneous testing of several genes in a rapid and efficient manner; however, there are other molecular diagnostic tools such as the nCounter® Vantage 3D single nucleotide variants (SNVs) solid tumour panel which also offer important benefits regarding sample input and time-to-response, making them very attractive for daily clinical use. This study aimed to test the performance of the Vantage panel in the routine workup of advanced non-squamous non-small cell lung cancer (NSCLC) patients and to validate and compare its outputs with the Oncomine Solid Tumor (OST) panel DNA kit, the standard technique in our institution. Two parallel multiplexed approaches were performed based on DNA NGS and direct digital detection of DNA with nCounter® technology to evaluate SNVs. A total of 42 advanced non-squamous NSCLC patients were prospectively included in the study. Overall, 95% of samples were successfully characterized by both technologies. The Vantage panel accounted for a sensitivity of 95% and a specificity of 82%. In terms of predictive values, the probability of truly presenting the SNV variant when it is detected by the nCounter panel was 82%, whereas the probability of not presenting the SNV variant when it is not detected by the platform was 95%. Finally, Cohen's Kappa coefficient was 0.76, indicating a substantial correlation grade between OST and Vantage panels. Our results make nCounter an analytically sensitive, practical and cost-effective tool.

4.
Cancers (Basel) ; 12(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365867

ABSTRACT

Personalized medicine is nowadays a paradigm in lung cancer management, offering important benefits to patients. This study aimed to test the feasibility and utility of embedding two multiplexed genomic platforms as the routine workup of advanced non-squamous non-small cell lung cancer (NSCLC) patients. Two parallel multiplexed approaches were performed based on DNA sequencing and direct digital detection of RNA with nCounter® technology to evaluate gene mutations and fusions. The results were used to guide genotype-directed therapies and patient outcomes were collected. A total of 224 advanced non-squamous NSCLC patients were prospectively included in the study. Overall, 85% of samples were successfully characterized at DNA and RNA levels and oncogenic drivers were found in 68% of patients, with KRAS, EGFR, METΔex14, BRAF, and ALK being the most frequent (31%, 19%, 5%, 4%, and 4%, respectively). Among all patients with complete genotyping results and follow-up data (n = 156), the median overall survival (OS) was 1.90 years (confidence interval (CI) 95% 1.69-2.10) for individuals harbouring an actionable driver treated with a matched therapy, compared with 0.59 years (CI 95% 0.39-0.79) in those not eligible for any targeted therapy and 0.61 years (CI 95% 0.12-1.10) in patients with no drivers identified (p < 0.001). Integrating DNA and RNA multiplexing technologies into the routine molecular testing of advanced NSCLC patients is feasible and useful and highlights the necessity of widespread integrating comprehensive molecular diagnosis into lung cancer care.

5.
Drugs ; 80(3): 241-262, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31912414

ABSTRACT

Small-cell lung cancer has defied our scientific community for decades. Chemotherapy has been the mainstay treatment for small-cell lung cancer (SCLC) and unlike its counterpart, non-small cell lung cancer, no significant therapeutic breakthroughs have been made since the 1970s. Among the reasons for this slow-paced therapeutic development, one that stands out is the distinctive and almost universal loss of function of the tumour suppressor genes TP53 and RB1 in this disease, for which pharmacological activation has yet to be achieved, despite having been highly sought after. Although no molecularly targeted approach has been approved for clinical practice thus far, several strategies are currently exploring the potential to drug the tumour's "Achilles heel" that stems from essential pathways regulating DNA-damage response. Most recently, we have witnessed newfound reasons to hope, as the combination of immunotherapy and systemic chemotherapy has improved survival outcomes, representing the first landmark achievement in decades and a new standard of care for patients with extensive disease SCLC. However, continuous efforts are still needed towards a better understanding of the molecular pathways that singularise this tumour to eventually identify the predictive biomarkers that might result in the development of a more rational therapeutic approach, including the use of immunotherapy combinations. In this review we aim to uncover critical aspects of the immune microenvironment and biology of SCLC and provide an overview of the current and future landscape of promising therapeutic opportunities. The challenge still stands, but regardless, we are living in exciting times to finally check SCLC off the "bucket list" of our scientific community.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy , Lung Neoplasms/therapy , Small Cell Lung Carcinoma/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...