Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Eur J Med Chem ; 275: 116615, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38936149

ABSTRACT

The serotonin type 6 receptor (5-HT6R) displays a strong constitutive activity, suggesting it participates largely in the physiological and pathological processes controlled by the receptor. The active states of 5-HT6R engage particular signal transduction pathways that lead to different biological responses. In this study, we present the development of 5-HT6R neutral antagonists at Gs signaling built upon the 2-phenylpyrrole scaffold. Using molecular dynamics simulations, we outline the relationship between the exposure of the basic center of the molecules and their ability to target the agonist-activated state of the receptor. Our study identifies compound 30 as a potent and selective neutral antagonist at 5-HT6R-operated Gs signaling. Furthermore, we demonstrate the cytoprotective effects of 30 and structurally diverse 5-HT6R neutral antagonists at Gs signaling in C8-D1A cells and human astrocytes exposed to rotenone. This effect is not observed for 5-HT6R agonists or inverse agonists. In light of these findings, we propose compound 30 as a valuable molecular probe to study the biological effects associated with the agonist-activated state of 5-HT6R and provide insight into the glioprotective properties of 5-HT6R neutral antagonists at Gs signaling.


Subject(s)
Astrocytes , Pyrroles , Receptors, Serotonin , Astrocytes/drug effects , Astrocytes/metabolism , Humans , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/chemical synthesis , Receptors, Serotonin/metabolism , Structure-Activity Relationship , Molecular Structure , Serotonin Antagonists/pharmacology , Serotonin Antagonists/chemistry , Serotonin Antagonists/chemical synthesis , Molecular Dynamics Simulation , Dose-Response Relationship, Drug , Signal Transduction/drug effects , Animals
2.
Biomed Pharmacother ; 177: 116867, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889634

ABSTRACT

The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.

3.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200230, 2024 May.
Article in English | MEDLINE | ID: mdl-38669615

ABSTRACT

BACKGROUND AND OBJECTIVES: The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS: We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS: This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION: These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).


Subject(s)
Biomarkers , Multiple Sclerosis, Relapsing-Remitting , Syndecan-1 , Humans , Biomarkers/cerebrospinal fluid , Adult , Female , Male , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Middle Aged , Syndecan-1/cerebrospinal fluid , Cohort Studies , Proteomics , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/diagnosis , Oligodendroglia/metabolism
4.
Med Sci (Paris) ; 40(3): 267-274, 2024 Mar.
Article in French | MEDLINE | ID: mdl-38520102

ABSTRACT

The characterization of the structural and functional organization of eukaryotic cells has revealed the membrane compartments and machinery required for vesicular protein transport. Most proteins essential for intercellular communication contain an N-terminal signal sequence enabling them to be incorporated into the biosynthetic or conventional secretory pathway, in which proteins are sequentially transported through the endoplasmic reticulum (ER) and the Golgi apparatus. However, major research studies have shown the existence of alternative secretory routes that are independent of the ER-Golgi and designated as unconventional secretory pathways. These pathways involve a large number of players that may divert specific compartments from their primary function in favor of secretory roles. The comprehensive description of these processes is therefore of utmost importance to unveil how proteins secreted through these alternative pathways control cell homeostasis or contribute to disease development.


Title: Sécrétion non conventionnelle - Nouvelles perspectives dans le trafic des protéines. Abstract: L'étude de l'organisation structurale et fonctionnelle des cellules eucaryotes a révélé les compartiments membranaires ainsi que la machinerie nécessaires au trafic vésiculaire des protéines. La plupart des protéines essentielles à la communication intercellulaire contiennent une séquence signal leur permettant d'être incorporées dans la voie de sécrétion conventionnelle, par laquelle les protéines sont transportées séquentiellement dans le réticulum endoplasmique (RE) puis l'appareil de Golgi. Cependant, les cellules eucaryotes sont également dotées de voies de sécrétion alternatives ou voies de sécrétion non conventionnelles, qui mettent en jeu de nombreux acteurs susceptibles de détourner certains compartiments de leurs fonctions principales au profit de fonctions sécrétoires.


Subject(s)
Eukaryotic Cells , Proteins , Humans , Protein Transport , Proteins/metabolism , Eukaryotic Cells/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus , Secretory Pathway
5.
J Neurointerv Surg ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514190

ABSTRACT

BACKGROUND: Performing endovascular treatment (EVT) in patients with acute ischemic stroke (AIS) allows a port of entry for intracranial biological sampling. OBJECTIVE: To test the hypothesis that specific immune players are molecular contributors to disease, outcome biomarkers, and potential targets for modifying AIS. METHODS: We examined 75 subjects presenting with large vessel occlusion of the anterior circulation and undergoing EVT. Intracranial blood samples were obtained by microcatheter aspiration, as positioned for stent deployment. Peripheral blood samples were collected from the femoral artery. Plasma samples were quality controlled by electrophoresis and analyzed using a Mesoscale multiplex for targeted inflammatory and vascular factors. RESULTS: We measured 37 protein biomarkers in our sample cohort. Through multivariate analysis, adjusted for age, intravenous thrombolysis, pretreatment National Institutes of Health Stroke Scale and Alberta Stroke Program Early CT scores, we found that post-clot blood levels of interleukin-6 (IL-6) were significantly correlated (adjusted P value <0.05) with disability assessed by the modified Rankin Scale (mRS) score at 90 days, with medium effect size. Chemokine (C-C) ligand 17 CCL17/TARC levels were inversely correlated with the mRS score. Examination of peripheral blood showed that these correlations did not reach statistical significance after correction. Intracranial biomarker IL-6 level was specifically associated with a lower likelihood of favorable outcome, defined as a mRS score of 0-2. CONCLUSIONS: Our findings show a signature of blood inflammatory factors at the cerebrovascular occlusion site. The correlations between these acute-stage biomarkers and mRS score outcome support an avenue for add-on and localized immune modulatory strategies in AIS.

6.
Neuropsychopharmacology ; 49(4): 747-756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212441

ABSTRACT

Major depressive disorder (MDD) is one of the most disabling psychiatric disorders in the world. First-line treatments such as selective serotonin reuptake inhibitors (SSRIs) still have many limitations, including a resistance to treatment in 30% of patients and a delayed clinical benefit that is observed only after several weeks of treatment. Increasing clinical evidence indicates that the acute administration of psychedelic agonists of the serotonin 5-HT2A receptor (5-HT2AR), such as psilocybin, to patients with MDD induce fast antidepressant effects, which persist up to five weeks after the treatment. However, the involvement of the 5-HT2AR in these antidepressant effects remains controversial. Furthermore, whether the hallucinogenic properties of 5-HT2AR agonists are mandatory to their antidepressant activity is still an open question. Here, we addressed these issues by investigating the effect of two psychedelics of different chemical families, DOI and psilocybin, and a non-hallucinogenic 5-HT2AR agonist, lisuride, in a chronic despair mouse model exhibiting a robust depressive-like phenotype. We show that a single injection of each drug to wild type mice induces anxiolytic- and antidepressant-like effects in the novelty-suppressed feeding, sucrose preference and forced swim tests, which last up to 15 days. DOI and lisuride administration did not produce antidepressant-like effects in 5-HT2A-/- mice, whereas psilocybin was still effective. Moreover, neither 5-HT1AR blockade nor dopamine D1 or D2 receptor blockade affected the antidepressant-like effects of psilocybin in 5-HT2A-/- mice. Collectively, these findings indicate that 5-HT2AR agonists can produce antidepressant-like effects independently of hallucinogenic properties through mechanisms involving or not involving the receptor.


Subject(s)
Depressive Disorder, Major , Hallucinogens , Humans , Animals , Mice , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Serotonin , Receptor, Serotonin, 5-HT2A , Psilocybin/pharmacology , Psilocybin/therapeutic use , Depressive Disorder, Major/drug therapy , Lisuride/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
7.
Sci Adv ; 10(4): eadg1679, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277461

ABSTRACT

Metabotropic glutamate receptor 2 (mGlu2) attracts particular attention as a possible target for a new class of antipsychotics. However, the signaling pathways transducing the effects of mGlu2 in the brain remain poorly characterized. Here, we addressed this issue by identifying native mGlu2 interactome in mouse prefrontal cortex. Nanobody-based affinity purification and mass spectrometry identified 149 candidate mGlu2 partners, including the neurotrophin receptor TrkB. The later interaction was confirmed both in cultured cells and prefrontal cortex. mGlu2 activation triggers phosphorylation of TrkB on Tyr816 in primary cortical neurons and prefrontal cortex. Reciprocally, TrkB stimulation enhances mGlu2-operated Gi/o protein activation. Furthermore, TrkB inhibition prevents the rescue of behavioral deficits by glutamatergic antipsychotics in phencyclidine-treated mice. Collectively, these results reveal a cross-talk between TrkB and mGlu2, which is key to the behavioral response to glutamatergic antipsychotics.


Subject(s)
Antipsychotic Agents , Mice , Animals , Antipsychotic Agents/pharmacology , Receptor, trkB/metabolism , Prefrontal Cortex/metabolism , Cells, Cultured , Neurons/metabolism
8.
J Med Chem ; 66(21): 14928-14947, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37797083

ABSTRACT

The multifactorial origin and neurochemistry of Alzheimer's disease (AD) call for the development of multitarget treatment strategies. We report a first-in-class triple acting compound that targets serotonin type 6 and 3 receptors (5-HT-Rs) and monoamine oxidase type B (MAO-B) as an approach for treating AD. The key structural features required for MAO-B inhibition and 5-HT6R antagonism and interaction with 5-HT3R were determined using molecular dynamic simulations and cryo-electron microscopy, respectively. Bioavailable PZ-1922 reversed scopolamine-induced cognitive deficits in the novel object recognition test. Furthermore, it displayed superior pro-cognitive properties compared to intepirdine (a 5-HT6R antagonist) in the AD model, which involved intracerebroventricular injection of an oligomeric solution of amyloid-ß peptide (oAß) in the T-maze test in rats. PZ-1922, but not intepirdine, restored levels of biomarkers characteristic of the debilitating effects of oAß. These data support the potential of a multitarget approach involving the joint modulation of 5-HT6R/5-HT3R/MAO-B in AD.


Subject(s)
Alzheimer Disease , Serotonin , Rats , Animals , Serotonin/adverse effects , Cryoelectron Microscopy , Receptors, Serotonin , Serotonin Antagonists/pharmacology , Serotonin Antagonists/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Monoamine Oxidase , Cognition , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use
9.
Biomolecules ; 13(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36830733

ABSTRACT

Diabetic neuropathy is often associated with chronic pain. Serotonin type 6 (5-HT6) receptor ligands, particularly inverse agonists, have strong analgesic potential and may be new candidates for treating diabetic neuropathic pain and associated co-morbid cognitive deficits. The current study addressed the involvement of 5-HT6 receptor constitutive activity and mTOR signaling in an experimental model of diabetic neuropathic pain induced by streptozocin (STZ) injection in the rat. Here, we show that mechanical hyperalgesia and associated cognitive deficits are suppressed by the administration of 5-HT6 receptor inverse agonists or rapamycin. The 5-HT6 receptor ligands also reduced tactile allodynia in traumatic and toxic neuropathic pain induced by spinal nerve ligation and oxaliplatin injection. Furthermore, both painful and co-morbid cognitive symptoms in diabetic rats are reduced by intrathecal delivery of a cell-penetrating peptide that disrupts 5-HT6 receptor-mTOR physical interaction. These findings demonstrate the deleterious influence of the constitutive activity of spinal 5-HT6 receptors upon painful and cognitive symptoms in diabetic neuropathic pains of different etiologies. They suggest that targeting the constitutive activity of 5-HT6 receptors with inverse agonists or disrupting the 5-HT6 receptor-mTOR interaction might be valuable strategies for the alleviation of diabetic neuropathic pain and cognitive co-morbidities.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Neuralgia , Rats , Animals , Diabetes Mellitus, Experimental/complications , Drug Inverse Agonism , Ligands , Serotonin/pharmacology , Hyperalgesia , TOR Serine-Threonine Kinases
10.
Molecules ; 28(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770761

ABSTRACT

Salt bridge (SB, double-charge-assisted hydrogen bonds) formation is one of the strongest molecular non-covalent interactions in biological systems, including ligand-receptor complexes. In the case of G-protein-coupled receptors, such an interaction is formed by the conserved aspartic acid (D3.32) residue and the basic moiety of the aminergic ligand. This study aims to determine the influence of the substitution pattern at the basic nitrogen atom and the geometry of the amine moiety at position 4 of 1H-pyrrolo[3,2-c]quinoline on the quality of the salt bridge formed in the 5-HT6 receptor and D3 receptor. To reach this goal, we synthetized and biologically evaluated a new series of 1H-pyrrolo[3,2-c]quinoline derivatives modified with various amines. The selected compounds displayed a significantly higher 5-HT6R affinity and more potent 5-HT6R antagonist properties when compared with the previously identified compound PZ-1643, a dual-acting 5-HT6R/D3R antagonist; nevertheless, the proposed modifications did not improve the activity at D3R. As demonstrated by the in silico experiments, including molecular dynamics simulations, the applied structural modifications were highly beneficial for the formation and quality of the SB formation at the 5-HT6R binding site; however, they are unfavorable for such interactions at D3R.


Subject(s)
Quinolines , Serotonin , Structure-Activity Relationship , Ligands , Amines , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemistry , Quinolines/chemistry , Receptors, Dopamine D3
11.
Cells ; 12(3)2023 01 27.
Article in English | MEDLINE | ID: mdl-36766768

ABSTRACT

The serotonin (5-HT)6 receptor still raises particular interest given its unique spatio-temporal pattern of expression among the serotonin receptor subtypes. It is the only serotonin receptor specifically expressed in the central nervous system, where it is detected very early in embryonic life and modulates key neurodevelopmental processes, from neuronal migration to brain circuit refinement. Its predominant localization in the primary cilium of neurons and astrocytes is also unique among the serotonin receptor subtypes. Consistent with the high expression levels of the 5-HT6 receptor in brain regions involved in the control of cognitive processes, it is now well-established that the pharmacological inhibition of the receptor induces pro-cognitive effects in several paradigms of cognitive impairment in rodents, including models of neurodevelopmental psychiatric disorders and neurodegenerative diseases. The 5-HT6 receptor can engage several signaling pathways in addition to the canonical Gs signaling, but there is still uncertainty surrounding the signaling pathways that underly its modulation of cognition, as well as how the receptor's coupling is dependent on its cellular compartmentation. Here, we describe recent findings showing how the proper subcellular localization of the receptor is achieved, how this peculiar localization determines signaling pathways engaged by the receptor, and their pathophysiological influence.


Subject(s)
Receptors, Serotonin , Serotonin , Serotonin/metabolism , Brain/metabolism , Neurons/metabolism
12.
Neurobiol Dis ; 176: 105949, 2023 01.
Article in English | MEDLINE | ID: mdl-36496200

ABSTRACT

The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.


Subject(s)
Neurons , Serotonin , Mice , Animals , Serotonin/metabolism , Neurons/metabolism , Brain/metabolism , Mice, Transgenic
13.
Article in English | MEDLINE | ID: mdl-36280258

ABSTRACT

BACKGROUND AND OBJECTIVES: To evaluate the predictive value of serum neurofilament light chain (sNfL) and CSF NfL (cNfL) in patients with radiologically isolated syndrome (RIS) for evidence of disease activity (EDA) and clinical conversion (CC). METHODS: sNfL and cNfL were measured at RIS diagnosis by single-molecule array (Simoa). The risk of EDA and CC according to sNfL and cNfL was evaluated using the Kaplan-Meier analysis and multivariate Cox regression models including age, spinal cord (SC) or infratentorial lesions, oligoclonal bands, CSF chitinase 3-like protein 1, and CSF white blood cells. RESULTS: Sixty-one patients with RIS were included. At diagnosis, sNfL and cNfL were correlated (Spearman r = 0.78, p < 0.001). During follow-up, 47 patients with RIS showed EDA and 36 patients showed CC (median time 12.6 months, 1-86). When compared with low levels, medium and high cNfL (>260 pg/mL) and sNfL (>5.0 pg/mL) levels were predictive of EDA (log rank, p < 0.01 and p = 0.02, respectively). Medium-high cNfL levels were predictive of CC (log rank, p < 0.01). In Cox regression models, cNfL and sNfL were independent factors of EDA, while SC lesions, cNfL, and sNfL were independent factors of CC. DISCUSSION: cNfL >260 pg/mL and sNfL >5.0 pg/mL at diagnosis are independent predictive factors of EDA and CC in RIS. Although cNfL predicts disease activity better, sNfL is more accessible than cNfL and can be considered when a lumbar puncture is not performed. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in people with radiologic isolated syndrome (RIS), initial serum and CSF NfL levels are associated with subsequent evidence of disease activity or clinical conversion.


Subject(s)
Autoimmune Diseases of the Nervous System , Demyelinating Diseases , Humans , Biomarkers , Demyelinating Diseases/diagnostic imaging , Intermediate Filaments , Oligoclonal Bands
15.
Elife ; 112022 06 01.
Article in English | MEDLINE | ID: mdl-35642785

ABSTRACT

Cancer stem cells (CSCs) alone can initiate and maintain tumors, but the function of non-cancer stem cells (non-CSCs) that form the tumor bulk remains poorly understood. Proteomic analysis showed a higher abundance of the extracellular matrix small leucine-rich proteoglycan fibromodulin (FMOD) in the conditioned medium of differentiated glioma cells (DGCs), the equivalent of glioma non-CSCs, compared to that of glioma stem-like cells (GSCs). DGCs silenced for FMOD fail to cooperate with co-implanted GSCs to promote tumor growth. FMOD downregulation neither affects GSC growth and differentiation nor DGC growth and reprogramming in vitro. DGC-secreted FMOD promotes angiogenesis by activating integrin-dependent Notch signaling in endothelial cells. Furthermore, conditional silencing of FMOD in newly generated DGCs in vivo inhibits the growth of GSC-initiated tumors due to poorly developed vasculature and increases mouse survival. Collectively, these findings demonstrate that DGC-secreted FMOD promotes glioma tumor angiogenesis and growth through paracrine signaling in endothelial cells and identifies a DGC-produced protein as a potential therapeutic target in glioma.


Subject(s)
Endothelial Cells , Glioma , Animals , Endothelial Cells/metabolism , Fibromodulin/metabolism , Glioma/pathology , Integrins/metabolism , Mice , Neoplastic Stem Cells/metabolism , Neovascularization, Pathologic/metabolism , Proteomics
16.
Neuropsychopharmacology ; 47(7): 1304-1314, 2022 06.
Article in English | MEDLINE | ID: mdl-35449450

ABSTRACT

Psychedelic-assisted psychotherapy gained considerable interest as a novel treatment strategy for fear-related mental disorders but the underlying mechanism remains poorly understood. The serotonin 2A (5-HT2A) receptor is a key target underlying the effects of psychedelics on emotional arousal but its role in fear processing remains controversial. Using the psychedelic 5-HT2A/5-HT2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and 5-HT2A receptor knockout (KO) mice we investigated the effect of 5-HT2A receptor activation on emotional processing. We show that DOI administration did not impair performance in a spontaneous alternation task but reduced anxiety-like avoidance behavior in the elevated plus maze and elevated zero maze tasks. Moreover, we found that DOI did not block memory recall but diminished fear expression in a passive avoidance task. Likewise, DOI administration reduced fear expression in an auditory fear conditioning paradigm, while it did not affect retention of fear extinction when administered prior to extinction learning. The effect of DOI on fear expression was abolished in 5-HT2A receptor KO mice. Administration of DOI induced a significant increase of c-Fos expression in specific amygdalar nuclei. Moreover, local infusion of the 5-HT2A receptor antagonist M100907 into the amygdala reversed the effect of systemic administration of DOI on fear expression while local administration of DOI into the amygdala was sufficient to suppress fear expression. Our data demonstrate that activation of 5-HT2A receptors in the amygdala suppresses fear expression but provide no evidence for an effect on retention of fear extinction.


Subject(s)
Fear , Hallucinogens , Amphetamines/pharmacology , Animals , Anxiety/drug therapy , Extinction, Psychological , Fear/physiology , Hallucinogens/pharmacology , Humans , Mice , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Serotonin 5-HT2 Receptor Antagonists/pharmacology
17.
Curr Opin Cell Biol ; 75: 102072, 2022 04.
Article in English | MEDLINE | ID: mdl-35305454

ABSTRACT

In eukaryotes, there is now compelling evidence that in addition to the conventional endoplasmic reticulum-Golgi secretory pathway, there are additional routes for the export of cytoplasmic proteins with a critical role in numerous physio-pathological conditions. These alternative secretory pathways or unconventional protein secretion (UPS) start now to be molecularly dissected, and while UPS landscape appears to be governed by a striking diversity and heterogeneity of mechanisms, common principles are emerging. We review here the role of key molecular determinants as well as the role of central hubs for UPS, highlighting the plasticity and dynamic properties of membrane-bound compartments. We also describe recent findings that position UPS as an integral component of adaptive responses to cope with particular cellular needs and stresses.


Subject(s)
Golgi Apparatus , Secretory Pathway , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport/physiology , Proteins/metabolism , Secretory Pathway/physiology
18.
J Neurosci ; 42(2): 166-182, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34810232

ABSTRACT

The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.


Subject(s)
Cerebral Cortex/metabolism , Membrane Proteins/metabolism , Neurons/metabolism , Symporters/metabolism , Animals , Cell Membrane/metabolism , GABAergic Neurons/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Synapses , Synaptic Transmission/physiology , K Cl- Cotransporters
19.
Biomolecules ; 13(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36671397

ABSTRACT

In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor (5-HT6R) recruits additional signaling pathways that control cognitive function, brain development, and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant constitutive and agonist-induced active states are involved in various pathological mechanisms, the development of biased ligands with different functional profiles at specific 5-HT6R-elicited signaling pathways may provide a novel therapeutic perspective in the field of neurodegenerative and psychiatric diseases. Based on the structure of SB-258585, an inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling, we designed a series of 1-(arylsulfonyl-isoindol-2-yl)piperazine derivatives and synthesized them using a sustainable mechanochemical method. We identified the safe and metabolically stable biased ligand 3g, which behaves as a neutral antagonist at the 5-HT6R-operated Gs signaling and displays inverse agonist activity at the Cdk5 pathway. Inversion of the sulfonamide bond combined with its incorporation into the isoindoline scaffold switched the functional profile of 3g at Gs signaling with no impact at the Cdk5 pathway. Compound 3g reduced the cytotoxicity of 6-OHDA and produced a glioprotective effect against rotenone-induced toxicity in C8-D1A astrocyte cell cultures. In view of these findings, compound 3g can be considered a promising biased ligand to investigate the role of the 5-HT6R-elicited Gs and Cdk5 signaling pathways in neurodegenerative diseases.


Subject(s)
Drug Inverse Agonism , Serotonin , Serotonin/pharmacology , Ligands , Cognition , Piperazines/pharmacology
20.
Int J Mol Sci ; 22(18)2021 09 21.
Article in English | MEDLINE | ID: mdl-34576341

ABSTRACT

Neurofibromatosis type 1 (NF1) is a common inherited disorder caused by mutations of the NF1 gene that encodes the Ras-GTPase activating protein neurofibromin, leading to overactivation of Ras-dependent signaling pathways such as the mTOR pathway. It is often characterized by a broad range of cognitive symptoms that are currently untreated. The serotonin 5-HT6 receptor is a potentially relevant target in view of its ability to associate with neurofibromin and to engage the mTOR pathway to compromise cognition in several cognitive impairment paradigms. Here, we show that constitutively active 5-HT6 receptors contribute to increased mTOR activity in the brain of Nf1+/- mice, a preclinical model recapitulating some behavioral alterations of NF1. Correspondingly, peripheral administration of SB258585, a 5-HT6 receptor inverse agonist, or rapamycin, abolished deficits in long-term social and associative memories in Nf1+/- mice, whereas administration of CPPQ, a neutral antagonist, did not produce cognitive improvement. These results show a key influence of mTOR activation by constitutively active 5-HT6 receptors in NF1 cognitive symptoms. They provide a proof of concept that 5-HT6 receptor inverse agonists already in clinical development as symptomatic treatments to reduce cognitive decline in dementia and psychoses, might be repurposed as therapies alleviating cognitive deficits in NF1 patients.


Subject(s)
Neurofibromatosis 1/metabolism , Receptors, Serotonin/metabolism , Animals , Humans , Serotonin/metabolism , Thiophenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...