Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Pharm ; 648: 123616, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37977291

ABSTRACT

High concentration formulations have become an important pre-requisite in the development of biological drugs, particularly in the case of subcutaneous administration where limited injection volume negatively affects the administered dose. In this study, we propose to develop high concentration formulations of biologics using a reversible protein-polyelectrolyte complex (RPC) approach. First, the versatility of RPC was assessed using different complexing agents and formats of therapeutic proteins, to define the optimal conditions for complexation and dissociation of the complex. The stability of the protein was investigated before and after complexation, as well as upon a 4-week storage period at various temperatures. Subsequently, two approaches were selected to develop high concentration RPC formulations: first, using up-concentrated RPC suspensions in aqueous buffers, and second, by generating spray-dried RPC and further resuspension in non-aqueous solvents. Results showed that the RPC concept is applicable to a wide range of therapeutic protein formats and the complexation-dissociation process did not affect the stability of the proteins. High concentration formulations up to 200 mg/mL could be achieved by up-concentrating RPC suspensions in aqueous buffers and RPC suspensions in non-aqueous solvents were concentrated up to 250 mg/mL. Although optimization is needed, our data suggests that RPC may be a promising avenue to achieve high concentration formulations of biologics for subcutaneous administration.


Subject(s)
Biological Products , Drug Compounding , Proteins , Excipients , Solvents
2.
Mol Nutr Food Res ; 67(16): e2200601, 2023 08.
Article in English | MEDLINE | ID: mdl-37173826

ABSTRACT

SCOPE: Red meat, a staple food of Western diets, can also induce IgE-mediated allergic reactions. Yet, apart from the heat-labile protein serum albumin and the carbohydrate α-Gal, the molecules causing allergic reactions to red meat remain unknown. METHODS AND RESULTS: IgE reactivity profiles of beef-sensitized individuals are analyzed by IgE-immunoblotting with protein extracts from raw and cooked beef. Two IgE-reactive proteins are identified by peptide mass fingerprinting as myosinlight chain 1 (MYL1) and myosin light chain 3 (MYL3) in cooked beef extract and are designated Bos d 13 isoallergens. MYL1 and MYL3 are produced recombinantly in Escherichia coli. ELISAs proved their IgE reactivity and circular dichroism analysis showed that they represent folded molecules with remarkable thermal stability. In vitro gastrointestinal digestion experiments showed the higher stability of rMYL1 as compared to rMYL3. Exposure of a monolayer of Caco-2 cells to rMYL1 indicated that the molecule is able to cross intestinal epithelial cells without disturbing the integrity of the tight junctions, suggesting the sensitizing capacity of MYL1. CONCLUSION: MYLs are identified as novel heat-stable bovine meat allergens.


Subject(s)
Allergens , Food Hypersensitivity , Humans , Cattle , Animals , Food Hypersensitivity/etiology , Hot Temperature , Caco-2 Cells , Immunoglobulin E , Meat/analysis , Cross Reactions
3.
Biomacromolecules ; 23(10): 4388-4400, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36170117

ABSTRACT

This work reports on a novel polyester copolymer containing poly(dopamine), a synthetic analogue of natural melanin, evaluated in a sustained-release drug delivery system for ocular intravitreal administration of drugs. More specifically, a graft copolymer of poly(ε-caprolactone)-graft-poly(dopamine) (PCL-g-PDA) has been synthesized and was shown to further extend the drug release benefits of state-of-the-art biodegradable intravitreal implants composed of poly(lactide) and poly(lactide-co-glycolide). The innovative biomaterial combines the documented drug-binding properties of melanin naturally present in the eye, with the established ocular tolerability and biodegradation of polyester implants. The PCL-g-PDA copolymer was obtained by a two-step modification of PCL with a final PDA content of around 2-3 wt % and was fully characterized by size exclusion chromatography, NMR, and diffusion ordered NMR spectroscopy. The thermoplastic nature of PCL-g-PDA allowed its simple processing by hot-melt compression molding to prepare small implants. The properties of unmodified PCL and PCL-g-PDA implants were studied and compared in terms of thermal properties (differential scanning calorimetry), thermal stability (thermogravimetry analysis), degradability, and in vitro cytotoxicity. PCL and PCL-g-PDA implants exhibited similar degradation properties in vitro and were both stable under physiological conditions over 110 days. Likewise, both materials were non-cytotoxic toward L929 and ARPE-19 cells. The drug loading and in vitro release properties of the new materials were investigated with dexamethasone (DEX) and ciprofloxacin hydrochloride (CIP) as representative drugs featuring low and high melanin-binding affinities, respectively. In comparison to unmodified PCL, PCL-g-PDA implants showed a significant extension of drug release, most likely because of specific drug-catechol interaction with the PDA moieties of the copolymer. The present study confirms the advantages of designing PDA-containing polyesters as a class of biodegradable and biocompatible thermoplastics that can modulate and remarkably extend the drug release kinetics thanks to their unique drug-binding properties, especially, but not limited to, for ocular applications.


Subject(s)
Melanins , Polyglactin 910 , Biocompatible Materials , Catechols , Ciprofloxacin , Delayed-Action Preparations/pharmacology , Dexamethasone , Drug Delivery Systems , Drug Liberation , Indoles , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...