Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tuberculosis (Edinb) ; 128: 102080, 2021 05.
Article in English | MEDLINE | ID: mdl-33799143

ABSTRACT

Several studies have documented the interaction between the immune and endocrine systems as an effective defense strategy against tuberculosis, involving the production of several molecules and immunological processes. In this study, we determined the effect of cortisol and dehydroepiandrosterone (DHEA) on the production of antimicrobial peptides such as cathelicidin and human ß-defensin (HBD) -2, and HBD-3 and their effect on intracellular growth of Mycobacterium tuberculosis (Mtb) in lung epithelial cells and macrophages. Our results showed that DHEA promotes the production of these antimicrobial peptides in infected cells, correlating with the decrease of Mtb bacilli loads. These results suggest the use of exogenous DHEA as an adjuvant for tuberculosis therapy.


Subject(s)
Antimicrobial Cationic Peptides/biosynthesis , Dehydroepiandrosterone/pharmacology , Hydrocortisone/pharmacology , Mycobacterium tuberculosis , beta-Defensins/biosynthesis , A549 Cells , Epithelial Cells/microbiology , Humans , Macrophages/microbiology , THP-1 Cells , Cathelicidins
2.
Tuberculosis (Edinb) ; 127: 102026, 2021 03.
Article in English | MEDLINE | ID: mdl-33262029

ABSTRACT

Several epidemiological studies have identified the cigarette smoke as a risk factor for the infection and development of tuberculosis. Nicotine is considered the main immunomodulatory molecule of the cigarette. In the present study, we evaluated the effect of nicotine in the growth of M. tuberculosis. Lung epithelial cells and macrophages were infected with M. tuberculosis and/or treated with nicotine. The results show that nicotine increased the growth of M. tuberculosis mainly in type II pneumocytes (T2P) but not in airway basal epithelial cells nor macrophages. Further, it was observed that nicotine decreased the production of ß-defensin-2, ß-defensin-3, and the cathelicidin LL-37 in all the evaluated cells at 24 and 72 h post-infection. The modulation of the expression of antimicrobial peptides appears to be partially mediated by the nicotinic acetylcholine receptor α7 since the blockade of this receptor partially reverted the production of antimicrobial peptides. In summary, it was found that nicotine decreases the production of HBD-2, HBD-3, and LL-37 in T2P during the infection with M. tuberculosis promoting its intracellular growth.


Subject(s)
Alveolar Epithelial Cells/microbiology , Mycobacterium tuberculosis/drug effects , Nicotine/toxicity , Nicotinic Agonists/toxicity , Tuberculosis, Pulmonary/microbiology , A549 Cells , Alveolar Epithelial Cells/metabolism , Antimicrobial Cationic Peptides/metabolism , Bacterial Load , Host-Pathogen Interactions , Humans , Macrophages/microbiology , Mycobacterium tuberculosis/growth & development , Tuberculosis, Pulmonary/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/metabolism , beta-Defensins/metabolism , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL
...