Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Trop Med Infect Dis ; 8(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37755899

ABSTRACT

Up-to-date knowledge of key epidemiological aspects of each Plasmodium species is necessary for making informed decisions on targeted interventions and control strategies to eliminate each of them. This study aims to describe the epidemiology of plasmodial species in Mali, where malaria is hyperendemic and seasonal. Data reports collected during high-transmission season over six consecutive years were analyzed to summarize malaria epidemiology. Malaria species and density were from blood smear microscopy. Data from 6870 symptomatic and 1740 asymptomatic participants were analyzed. The median age of participants was 12 years, and the sex ratio (male/female) was 0.81. Malaria prevalence from all Plasmodium species was 65.20% (95% CI: 60.10-69.89%) and 22.41% (CI: 16.60-28.79%) for passive and active screening, respectively. P. falciparum was the most prevalent species encountered in active and passive screening (59.33%, 19.31%). This prevalence was followed by P. malariae (1.50%, 1.15%) and P. ovale (0.32%, 0.06%). Regarding frequency, P. falciparum was more frequent in symptomatic individuals (96.77% vs. 93.24%, p = 0.014). In contrast, P. malariae was more frequent in asymptomatic individuals (5.64% vs. 2.45%, p < 0.001). P. ovale remained the least frequent species (less than 1%), and no P. vivax was detected. The most frequent coinfections were P. falciparum and P. malariae (0.56%). Children aged 5-9 presented the highest frequency of P. falciparum infections (41.91%). Non-falciparum species were primarily detected in adolescents (10-14 years) with frequencies above 50%. Only P. falciparum infections had parasitemias greater than 100,000 parasites per µL of blood. P. falciparum gametocytes were found with variable prevalence across age groups. Our data highlight that P. falciparum represented the first burden, but other non-falciparum species were also important. Increasing attention to P. malariae and P. ovale is essential if malaria elimination is to be achieved.

2.
Antimicrob Agents Chemother ; 66(8): e0018822, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35862750

ABSTRACT

Malaria control relies on passive case detection, and this strategy fails detecting asymptomatic infections. In addition, infections in endemic areas harbor multiple parasite genotypes that could affect case management and malaria epidemiology. Here, we performed AmpSeq genotyping to capture polymorphisms associated with antimalarial resistance and the genetic diversity within natural Plasmodium falciparum infections. Known genetic polymorphisms associated with altered drug susceptibility were screened for the five most common marker genes, pfdhfr, pfdhps, pfmdr1, pfcrt, and pfK13, and genetic diversity was established from two known AmpSeq markers, cpmp and csp. Relative abundance of the different genotypes within mixed infections was calculated from the number of reads per genotype. Genotyping was performed on 117 samples, 63 from asymptomatic and 54 from symptomatic individuals. We identified up to 15 genotypes within an infection, and the median multiplicity of infection was higher in asymptomatic infections (median MOI = 5 in asymptomatics versus median MOI = 2 in symptomatics, P < 0.001). No genetic differentiation on parasites from asymptomatic and symptomatic individuals was found. No mutation associated with ART resistance was identified. Prevalence of the P. falciparum chloroquine resistance wild-type genotype (CVMNK) reached 80%, confirming a return to chloroquine (CQ) sensitive parasites in Cameroon. In addition, the CQ-associated resistant genotype (CVIET) was present at very low density in polyclonal infections. Persistence of low-density chloroquine resistant parasites indicates competition-survival trade-offs may contribute to maintaining genetic diversity in natura. Thus, monitoring the expansion of these low-density genotypes in different immune backgrounds will be critical to evaluate drug policy changes.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Asymptomatic Infections/epidemiology , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/genetics , Genotype , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
3.
Sci Rep ; 12(1): 8934, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624125

ABSTRACT

Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear. Here we studied the mechanics and surface protein expression of beta thalassaemia heterozygous erythrocytes, measured their susceptibility to P. falciparum invasion, and calculated the energy required for merozoites to invade them. We found invasion-relevant differences in beta thalassaemic cells versus matched controls, specifically: elevated membrane tension, reduced bending modulus, and higher levels of expression of the major invasion receptor basigin. However, these differences acted in opposition to each other with respect to their likely impact on invasion, and overall we did not observe beta thalassaemic cells to have lower P. falciparum invasion efficiency for any of the strains tested.


Subject(s)
Malaria, Falciparum , Malaria , beta-Thalassemia , Erythrocyte Membrane/parasitology , Heterozygote , Humans , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , beta-Thalassemia/genetics
4.
PLoS Pathog ; 17(7): e1008864, 2021 07.
Article in English | MEDLINE | ID: mdl-34197567

ABSTRACT

Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium knowlesi/immunology , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , Cells, Cultured , Humans , Malaria, Vivax/prevention & control , Protozoan Proteins/immunology
5.
Nature ; 585(7826): 579-583, 2020 09.
Article in English | MEDLINE | ID: mdl-32939086

ABSTRACT

Malaria has had a major effect on the human genome, with many protective polymorphisms-such as the sickle-cell trait-having been selected to high frequencies in malaria-endemic regions1,2. The blood group variant Dantu provides 74% protection against all forms of severe malaria in homozygous individuals3-5, a similar degree of protection to that afforded by the sickle-cell trait and considerably greater than that offered by the best malaria vaccine. Until now, however, the protective mechanism has been unknown. Here we demonstrate the effect of Dantu on the ability of the merozoite form of the malaria parasite Plasmodium falciparum to invade red blood cells (RBCs). We find that Dantu is associated with extensive changes to the repertoire of proteins found on the RBC surface, but, unexpectedly, inhibition of invasion does not correlate with specific RBC-parasite receptor-ligand interactions. By following invasion using video microscopy, we find a strong link between RBC tension and merozoite invasion, and identify a tension threshold above which invasion rarely occurs, even in non-Dantu RBCs. Dantu RBCs have higher average tension than non-Dantu RBCs, meaning that a greater proportion resist invasion. These findings provide both an explanation for the protective effect of Dantu, and fresh insight into why the efficiency of P. falciparum invasion might vary across the heterogenous populations of RBCs found both within and between individuals.


Subject(s)
Blood Group Antigens/genetics , Erythrocytes/cytology , Erythrocytes/parasitology , Malaria, Falciparum/pathology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/metabolism , Polymorphism, Genetic , Blood Group Antigens/classification , Blood Group Antigens/metabolism , Child , Erythrocytes/metabolism , Erythrocytes/pathology , Female , Genotype , Humans , Kenya , Ligands , Male , Merozoites/metabolism , Merozoites/pathogenicity , Microscopy, Video , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity
6.
Colloids Surf B Biointerfaces ; 195: 111266, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32739771

ABSTRACT

The development of new therapeutic strategies against multidrug resistant Gram-negative bacteria is a major challenge for pharmaceutical research. In this respect, it is increasingly recognized that an efficient treatment for resistant bacterial infections should combine antimicrobial and anti-inflammatory effects. Here, we explore the multifunctional therapeutic potential of nanostructured self-assemblies from a cationic bolaamphiphile, which target bacterial lipopolysaccharides (LPSs) and associates with an anti-bacterial nucleic acid to form nanoplexes with therapeutic efficacy against Gram-negative bacteria. To understand the mechanistic details of these multifunctional antimicrobial-anti-inflammatory properties, we performed a fundamental study, comparing the interaction of these nanostructured therapeutics with synthetic biomimetic bacterial membranes and live bacterial cells. Combining a wide range of experimental techniques (Confocal Microscopy, Fluorescence Correlation Spectroscopy, Microfluidics, NMR, LPS binding assays), we demonstrate that the LPS targeting capacity of the bolaamphiphile self-assemblies, comparable to that exerted by Polymixin B, is a key feature of these nanoplexes and one that permits entry of therapeutic nucleic acids in Gram-negative bacteria. These findings enable a new approach to the design of efficient multifunctional therapeutics with combined antimicrobial and anti-inflammatory effects and have therefore the potential to broadly impact fundamental and applied research on self-assembled nano-sized antibacterials for antibiotic resistant infections.


Subject(s)
Anti-Infective Agents , Lipopolysaccharides , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , DNA , Gram-Negative Bacteria , Microbial Sensitivity Tests
7.
Sci Rep ; 10(1): 10894, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616799

ABSTRACT

The recurrent emergence of drug resistance in Plasmodium falciparum increases the urgency to genetically validate drug resistance mechanisms and identify new targets. Reverse genetics have facilitated genome-scale knockout screens in Plasmodium berghei and Toxoplasma gondii, in which pooled transfections of multiple vectors were critical to increasing scale and throughput. These approaches have not yet been implemented in human malaria species such as P. falciparum and P. knowlesi, in part because the extent to which pooled transfections can be performed in these species remains to be evaluated. Here we use next-generation sequencing to quantitate uptake of a pool of 94 barcoded vectors. The distribution of vector acquisition allowed us to estimate the number of barcodes and DNA molecules taken up by the parasite population. Dilution cloning of P. falciparum transfectants showed that individual clones possess as many as seven episomal barcodes, revealing that an intake of multiple vectors is a frequent event despite the inefficient transfection efficiency. Transfection of three spectrally-distinct fluorescent reporters allowed us to evaluate different transfection methods and revealed that schizont-stage transfection limited the tendency for parasites to take up multiple vectors. In contrast to P. falciparum, we observed that the higher transfection efficiency of P. knowlesi resulted in near complete representation of the library. These findings have important implications for how reverse genetics can be scaled in culturable Plasmodium species.


Subject(s)
DNA, Recombinant/metabolism , Genetic Vectors/metabolism , Plasmids/metabolism , Plasmodium falciparum/metabolism , Transfection/methods , Biological Transport , Calmodulin/genetics , Clone Cells , DNA Barcoding, Taxonomic , Electroporation , Erythrocytes/parasitology , Flow Cytometry , Gene Library , Genetic Vectors/genetics , Humans , Luminescent Proteins/genetics , Plasmids/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium knowlesi/genetics , Plasmodium knowlesi/growth & development , Plasmodium knowlesi/metabolism , Promoter Regions, Genetic , Species Specificity
8.
PLoS Pathog ; 14(11): e1007436, 2018 11.
Article in English | MEDLINE | ID: mdl-30496294

ABSTRACT

Invasion of human erythrocytes is essential for Plasmodium falciparum parasite survival and pathogenesis, and is also a complex phenotype. While some later steps in invasion appear to be invariant and essential, the earlier steps of recognition are controlled by a series of redundant, and only partially understood, receptor-ligand interactions. Reverse genetic analysis of laboratory adapted strains has identified multiple genes that when deleted can alter invasion, but how the relative contributions of each gene translate to the phenotypes of clinical isolates is far from clear. We used a forward genetic approach to identify genes responsible for variable erythrocyte invasion by phenotyping the parents and progeny of previously generated experimental genetic crosses. Linkage analysis using whole genome sequencing data revealed a single major locus was responsible for the majority of phenotypic variation in two invasion pathways. This locus contained the PfRh2a and PfRh2b genes, members of one of the major invasion ligand gene families, but not widely thought to play such a prominent role in specifying invasion phenotypes. Variation in invasion pathways was linked to significant differences in PfRh2a and PfRh2b expression between parasite lines, and their role in specifying alternative invasion was confirmed by CRISPR-Cas9-mediated genome editing. Expansion of the analysis to a large set of clinical P. falciparum isolates revealed common deletions, suggesting that variation at this locus is a major cause of invasion phenotypic variation in the endemic setting. This work has implications for blood-stage vaccine development and will help inform the design and location of future large-scale studies of invasion in clinical isolates.


Subject(s)
Erythrocytes/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Animals , Antibodies, Protozoan/immunology , Carrier Proteins/metabolism , Genetic Testing/methods , Humans , Ligands , Phenotype , Protozoan Proteins/metabolism , Reticulocytes/metabolism
9.
Sci Rep ; 7: 41242, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120892

ABSTRACT

Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy.


Subject(s)
Anti-Infective Agents/pharmacology , Cardiolipins/metabolism , Cell Membrane/metabolism , Escherichia coli/metabolism , Models, Biological , Nanoparticles/chemistry , Animals , Caco-2 Cells , Cell Membrane/drug effects , Dynamic Light Scattering , Escherichia coli/drug effects , Fluoresceins/metabolism , Furans/chemistry , Humans , Liposomes , Mesocricetus , Pyridones/chemistry , Rats, Sprague-Dawley
10.
PLoS Negl Trop Dis ; 7(4): e2155, 2013.
Article in English | MEDLINE | ID: mdl-23593522

ABSTRACT

BACKGROUND: Plasmodium vivax can potentially lead to life-threatening episodes but the mechanisms underlying severe disease remain poorly defined. Cytoadhesion of infected erythrocytes may contribute to P. vivax sequestration and organ injury although its physiological impact is still unknown. Here, we aimed to describe clinically-relevant cytoadhesive phenotypes of P. vivax isolates. METHODOLOGY/PRINCIPAL FINDINGS: Rosetting and adhesion to CSA, CD36, ICAM1, placental and brain cryosections were determined in P. vivax peripheral isolates from 12 pregnant women, 24 non-pregnant women and 23 men from Manaus (Brazil). P. falciparum co-infection was excluded by PCR and P. vivax isolates were genotyped by assessing the size polymorphism of microsatellites ms2, ms20 and msp1F3 through capillary electrophoresis of PCR products. P. vivax monoinfection was confirmed by PCR in 59 isolates, with 50 (85%) of them being single-clone infections. One P. vivax haplotype was more frequently found among pregnant women (33%) than in non-pregnant women (0%) and men (4%; p=0.010). Rosetting was observed in 64% of the isolates, adhesion to CSA in 15%, to ICAM1 in 12% and to placental cryosections in 9%, being similar among pregnant and non-pregnant groups. Intensity of rosetting was higher among anaemic individuals compared to non-anaemic (p=0.010) and decreased with increasing haematocrit (p=0.033) and haemoglobin levels (p=0.015). CONCLUSIONS/SIGNIFICANCE: P. vivax peripheral isolates from pregnant women do not exhibit a prominent adhesion to CSA, although other parasite phenotypes still unknown may increase the propagation of certain P. vivax clones observed among pregnant hosts. Rosetting is a frequent cytoadhesive phenotype in P. vivax infections that may contribute to the development of anaemia.


Subject(s)
Anemia/parasitology , Cell Adhesion/physiology , Plasmodium vivax/physiology , Adult , Brain/parasitology , Brazil , CD36 Antigens/metabolism , Chondroitin Sulfates/metabolism , Female , Genotype , Humans , In Vitro Techniques , Intercellular Adhesion Molecule-1/metabolism , Male , Middle Aged , Placenta/parasitology , Polymerase Chain Reaction , Pregnancy , Young Adult
11.
Mol Biochem Parasitol ; 184(1): 44-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22546550

ABSTRACT

The cyclophilins are a large family of proteins implicated in folding, transport and regulation of other proteins and are potential drug targets in cancer and in some viral and parasitic infections. The functionality of cyclophilins appears to depend on peptidyl-prolyl cis-trans isomerase (foldase) and/or molecular chaperone activities. In this study we assessed the peptidyl-prolyl isomerase and chaperone activities of 8 members of the Plasmodium falciparum cyclophilin family, all produced recombinantly using a common host/vector system. While only two of these proteins had isomerase activity, all of them displayed chaperone function as judged by the ability to prevent the thermal aggregation of model substrates. We suggest that the cyclophilins constitute a family of molecular chaperones in malarial parasites that complement the functions of other chaperones such as the heat-shock proteins.


Subject(s)
Cyclophilins/metabolism , Molecular Chaperones/metabolism , Peptidylprolyl Isomerase/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Cloning, Molecular , Cyclophilins/genetics , Molecular Chaperones/genetics , Peptidylprolyl Isomerase/genetics , Plasmodium falciparum/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
Protein Expr Purif ; 78(2): 225-34, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21549842

ABSTRACT

Malaria represents a global health, economic and social burden of enormous magnitude. Chemotherapy is at the moment a largely effective weapon against the disease, but the appearance of drug-resistant parasites is reducing the effectiveness of most drugs. Finding new drug-target candidates is one approach to the development of new drugs. The family of cyclophilins may represent a group of potential targets. They are involved in protein folding and regulation due to their peptidyl-prolyl cis-trans isomerase and/or chaperone activities. They also mediate the action of the immunosuppressive drug cyclosporin A, which additionally has strong antimalarial activity. In the genome database of the most lethal human malarial parasite Plasmodium falciparum, 11 genes apparently encoding cyclophilin or cyclophilin-like proteins were found, but most of these have not yet been characterized. Previously a pET vector conferring a C-terminal His6 tag was used for recombinant expression and purification of one member of the P. falciparum cyclophilin family in Escherichia coli. The approach here was to use an identical method to produce all of the other members of this family and thereby allow the most consistent functional comparisons. We were successful in generating all but three of the family, plus a single amino-acid mutant, in the same recombinant form as either full-length proteins or isolated cyclophilin-like domains. The recombinant proteins were assessed by thermal melt assay for correct folding and cyclosporin A binding.


Subject(s)
Cyclophilins/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Chromatography, Affinity , Cyclophilins/chemistry , Cyclophilins/genetics , Cyclosporine/chemistry , Cyclosporine/metabolism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Histidine/chemistry , Histidine/genetics , Humans , Mutagenesis, Site-Directed , Oligopeptides/chemistry , Oligopeptides/genetics , Phylogeny , Plasmodium falciparum/metabolism , Protein Binding , Protein Stability , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Sequence Alignment , Temperature
13.
Mol Biochem Parasitol ; 172(2): 152-5, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20399810

ABSTRACT

With the rapid spread of drug-resistant strains of Plasmodium falciparum, the development of new antimalarials is an urgent need. As malaria parasites live in a highly pro-oxidant environment, their anti-oxidant defences have frequently been suggested as candidate drug targets. A key point in such defences is the production of NADPH e.g. for maintaining anti-oxidant glutathione in the reduced state. Some authors have attributed this function in P. falciparum to a glutamate dehydrogenase, therefore proposed as a potential drug target. Here we show that isophthalic acid inhibits both Plasmodium GDH and bovine GDH but showing marked discrimination (70-fold lower K(i) for the parasite GDH). Isophthalic acid impairs intra-erythrocytic growth of P. falciparumin vitro whilst o-phthalic acid, not a GDH inhibitor, shows no effect. This offers hope that with careful design or thorough screening it should be possible to find inhibitors with the necessary selectivity between parasite and human GDHs.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Glutamate Dehydrogenase/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Animals , Cattle , Erythrocytes/parasitology , Humans , Microbial Viability/drug effects , Phthalic Acids/pharmacology , Plasmodium falciparum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...