Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(14): 4546-4558, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37307414

ABSTRACT

Hydrofluorocarbon (HFC) refrigerants with zero ozone-depleting potential have replaced chlorofluorocarbons and are now ubiquitous. However, some HFCs have high global warming potential, which has led to calls by governments to phase out these HFCs. Technologies to recycle and repurpose these HFCs need to be developed. Therefore, thermophysical properties of HFCs are needed over a wide range of conditions. Molecular simulations can help understand and predict the thermophysical properties of HFCs. The prediction capability of a molecular simulation is directly tied to the accuracy of the force field. In this work, we applied and refined a machine learning-based workflow to optimize the Lennard-Jones parameters of classical HFC force fields for HFC-143a (CF3CH3), HFC-134a (CH2FCF3), R-50 (CH4), R-170 (C2H6), and R-14 (CF4). Our workflow involves liquid density iterations with molecular dynamics simulations and vapor-liquid equilibrium (VLE) iterations with Gibbs ensemble Monte Carlo simulations. Support vector machine classifiers and Gaussian process surrogate models save months of simulation time and can efficiently select optimal parameters from half a million distinct parameter sets. Excellent agreement as evidenced by low mean absolute percent errors (MAPEs) of simulated liquid density (ranging from 0.3% to 3.4%), vapor density (ranging from 1.4% to 2.6%), vapor pressure (ranging from 1.3% to 2.8%), and enthalpy of vaporization (ranging from 0.5% to 2.7%) relative to experiments was obtained for the recommended parameter set of each refrigerant. The performance of each new parameter set was superior or similar to the best force field in the literature.

2.
J Chem Phys ; 149(18): 180901, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441927

ABSTRACT

The field of computational molecular sciences (CMSs) has made innumerable contributions to the understanding of the molecular phenomena that underlie and control chemical processes, which is manifested in a large number of community software projects and codes. The CMS community is now poised to take the next transformative steps of better training in modern software design and engineering methods and tools, increasing interoperability through more systematic adoption of agreed upon standards and accepted best-practices, overcoming unnecessary redundancy in software effort along with greater reproducibility, and increasing the deployment of new software onto hardware platforms from in-house clusters to mid-range computing systems through to modern supercomputers. This in turn will have future impact on the software that will be created to address grand challenge science that we illustrate here: the formulation of diverse catalysts, descriptions of long-range charge and excitation transfer, and development of structural ensembles for intrinsically disordered proteins.

3.
Langmuir ; 33(38): 9793-9802, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28845994

ABSTRACT

We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10-5 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants C10E4 between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.

4.
J Comput Chem ; 38(19): 1727-1739, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28436594

ABSTRACT

Cassandra is an open source atomistic Monte Carlo software package that is effective in simulating the thermodynamic properties of fluids and solids. The different features and algorithms used in Cassandra are described, along with implementation details and theoretical underpinnings to various methods used. Benchmark and example calculations are shown, and information on how users can obtain the package and contribute to it are provided. © 2017 Wiley Periodicals, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL
...