Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 23(6): 617-630, 2023 06.
Article in English | MEDLINE | ID: mdl-31905002

ABSTRACT

The biological risks of the deep space environment must be elucidated to enable a new era of human exploration and scientific discovery beyond low earth orbit (LEO). There is a paucity of deep space biological missions that will inform us of the deleterious biological effects of prolonged exposure to the deep space environment. To safely undertake long-term missions to Mars and space habitation beyond LEO, we must first prove and optimize autonomous biosensors to query the deep space radiation environment. Such biosensors must contain organisms that can survive for extended periods with minimal life support technology and must function reliably with intermittent communication with Earth. NASA's BioSentinel mission, a nanosatellite containing the budding yeast Saccharomyces cerevisiae, is such a biosensor and one of the first biological missions beyond LEO in nearly half a century. It will help fill critical gaps in knowledge about the effects of uniquely composed, chronic, low-flux deep space radiation on biological systems and in particular will provide valuable insight into the DNA damage response to highly ionizing particles. Due to yeast's robustness and desiccation tolerance, it can survive for periods analogous to that of a human Mars mission. In this study, we discuss our optimization of conditions for long-term reagent storage and yeast survival under desiccation in preparation for the BioSentinel mission. We show that long-term yeast cell viability is maximized when cells are air-dried in trehalose solution and stored in a low-relative humidity and low-temperature environment and that dried yeast is sensitive to low doses of deep space-relevant ionizing radiation under these conditions. Our findings will inform the design and development of improved future long-term biological missions into deep space.


Subject(s)
Mars , Space Flight , Humans , Saccharomyces cerevisiae , Earth, Planet , Extraterrestrial Environment
2.
Genes Dev ; 27(17): 1851-6, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24013500

ABSTRACT

Long noncoding RNAs (lncRNAs) can trigger repressive chromatin, but how they recruit silencing factors remains unclear. In Schizosaccharomyces pombe, heterochromatin assembly on transcribed noncoding pericentromeric repeats requires both RNAi and RNAi-independent mechanisms. In Saccharomyces cerevisiae, which lacks a repressive chromatin mark (H3K9me [methylated Lys9 on histone H3]), unstable ncRNAs are recognized by the RNA-binding protein Nrd1. We show that the S. pombe ortholog Seb1 is associated with pericentromeric lncRNAs. Individual mutation of dcr1+ (Dicer) or seb1+ results in equivalent partial reductions of pericentromeric H3K9me levels, but a double mutation eliminates this mark. Seb1 functions independently of RNAi by recruiting the NuRD (nucleosome remodeling and deacetylase)-related chromatin-modifying complex SHREC (Snf2-HDAC [histone deacetylase] repressor complex).


Subject(s)
Gene Expression Regulation, Fungal , Gene Silencing/physiology , Heterochromatin/metabolism , Repressor Proteins/metabolism , Ribonucleoproteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , RNA Interference , RNA, Long Noncoding/metabolism , Repressor Proteins/genetics , Ribonucleoproteins/genetics , Schizosaccharomyces pombe Proteins/genetics , Vesicular Transport Proteins/metabolism
3.
Nature ; 496(7445): 377-81, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23485968

ABSTRACT

A hallmark of histone H3 lysine 9 (H3K9)-methylated heterochromatin, conserved from the fission yeast Schizosaccharomyces pombe to humans, is its ability to spread to adjacent genomic regions. Central to heterochromatin spread is heterochromatin protein 1 (HP1), which recognizes H3K9-methylated chromatin, oligomerizes and forms a versatile platform that participates in diverse nuclear functions, ranging from gene silencing to chromosome segregation. How HP1 proteins assemble on methylated nucleosomal templates and how the HP1-nucleosome complex achieves functional versatility remain poorly understood. Here we show that binding of the key S. pombe HP1 protein, Swi6, to methylated nucleosomes drives a switch from an auto-inhibited state to a spreading-competent state. In the auto-inhibited state, a histone-mimic sequence in one Swi6 monomer blocks methyl-mark recognition by the chromodomain of another monomer. Auto-inhibition is relieved by recognition of two template features, the H3K9 methyl mark and nucleosomal DNA. Cryo-electron-microscopy-based reconstruction of the Swi6-nucleosome complex provides the overall architecture of the spreading-competent state in which two unbound chromodomain sticky ends appear exposed. Disruption of the switch between the auto-inhibited and spreading-competent states disrupts heterochromatin assembly and gene silencing in vivo. These findings are reminiscent of other conditionally activated polymerization processes, such as actin nucleation, and open up a new class of regulatory mechanisms that operate on chromatin in vivo.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Amino Acid Sequence , Animals , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/ultrastructure , Cryoelectron Microscopy , Gene Silencing , Heterochromatin/chemistry , Heterochromatin/ultrastructure , Histones/chemistry , Histones/metabolism , Methylation , Models, Molecular , Molecular Sequence Data , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Protein Structure, Tertiary , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/antagonists & inhibitors , Schizosaccharomyces pombe Proteins/ultrastructure , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...