Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-479443

ABSTRACT

The Omicron variant has become dominant in the U.S. and around the world. This variant is found to be 2-fold more infectious than the Delta variant, posing a significant threat of severe cases and death. We and others have recently reported that the N-terminus domain (NTD) of the SARS-CoV-2 of various variants is responsible for inducing cytokine release in human PBMCs. Here, we demonstrate that the NTD of the Omicron variant remains highly effective at inducing cytokine release in human PBMCs. Furthermore, we show that Ponatinib and a novel compound, Olverembatinib, are potent Omicron NTD-mediated cytokine release inhibitors. Target profiling revealed that Olverembatinib blocks most of the previously identified kinases responsible for cytokine release. Together, we propose that Ponatinib and Olverembatinib may represent an attractive therapeutic option for treating moderate to severe COVID-19 cases. HIGHLIGHTSO_LIThe N-terminus domain (NTD) of the SARS-CoV-2 Omicron variant strongly induces multiple inflammatory molecules in PBMCs, unaffected by the mutations observed in the NTD. C_LIO_LIThe cytokine release mediated by the Omicron variant is comparable to the Delta variant. C_LIO_LIOlverembatinib, a clinical-stage multi-kinase inhibitor, potently inhibits Omicron NTD-mediated cytokine release. C_LIO_LIOlverembatinib could relieve severe symptoms associated with COVID-19 Omicron and Delta variants. C_LI

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-438871

ABSTRACT

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the spike protein from the SARS-CoV-2 and emerging variants B1.1.7 and B.1.351 substantially induces multiple inflammatory molecules in human monocytes and PBMCs. Further, we identified several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine release. Additionally, we found that the FDA-approved, multi-kinase inhibitor Ponatinib is a potent inhibitor of the NTD-mediated cytokine storm. Taken together, we propose that agents targeting multiple kinases required for the SARS-CoV-2-mediated cytokine storm, such as Ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...