Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eur J Hum Genet ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678163

ABSTRACT

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.

2.
Mol Biol Rep ; 51(1): 216, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281202

ABSTRACT

BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder typified by various combination of numerous Café-au-lait macules, cutaneous and plexiform neurofibromas, freckling of inguinal or axillary region, optic glioma, Lisch nodules and osseous lesions. Cherubism is a rare genetic syndrome described by progressive swelling of the lower and/or upper jaw due to replacement of bone by fibrous connective tissue. Patients are reported in the literature with NF1 and cherubism-like phenotype due to the NF1 osseous lesions in the jaws. The purpose of this case report is the description of a young male genetically diagnosed with both NF1 and cherubism. METHODS AND RESULTS: A 9 years and six month old patient with clinical findings of NF1 and cherubism in whom both diseases were genetically confirmed, is presented. The patient was evaluated by a pediatrician, a pediatric endocrinologist, an ophthalmologist, and an oral and maxillofacial surgeon. A laboratory and hormonal screening, a histological examination, a chest X-ray, a magnetic resonance imaging (MRI) of the orbit and a digital panoramic radiography were performed. Genetic testing applying Whole Exome Sequencing was conducted. CONCLUSIONS: A novel and an already reported pathogenic variants were detected in NF1 and SH3BP2 genes, respectively. This is the first described patient with coexistence of NF1 and cherubism. The contribution of Next Generation Sequencing (NGS) in gene variant identification as well as the importance of close collaboration between laboratory scientists and clinicians, is highlighted. Both are essential for optimizing the diagnostic approach of patients with a complex phenotype.


Subject(s)
Cherubism , Neurofibromatosis 1 , Child , Humans , Male , Cafe-au-Lait Spots/complications , Cafe-au-Lait Spots/genetics , Cherubism/complications , Cherubism/genetics , Genetic Testing , Neurofibromatosis 1/complications , Neurofibromatosis 1/genetics , Neurofibromatosis 1/diagnosis , Phenotype
3.
Genet Med ; 26(2): 101013, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37924258

ABSTRACT

PURPOSE: RNF213, encoding a giant E3 ubiquitin ligase, has been recognized for its role as a key susceptibility gene for moyamoya disease. Case reports have also implicated specific variants in RNF213 with an early-onset form of moyamoya disease with full penetrance. We aimed to expand the phenotypic spectrum of monogenic RNF213-related disease and to evaluate genotype-phenotype correlations. METHODS: Patients were identified through reanalysis of exome sequencing data of an unselected cohort of unsolved pediatric cases and through GeneMatcher or ClinVar. Functional characterization was done by proteomics analysis and oxidative phosphorylation enzyme activities using patient-derived fibroblasts. RESULTS: We identified 14 individuals from 13 unrelated families with (de novo) missense variants in RNF213 clustering within or around the Really Interesting New Gene (RING) domain. Individuals presented either with early-onset stroke (n = 11) or with Leigh syndrome (n = 3). No genotype-phenotype correlation could be established. Proteomics using patient-derived fibroblasts revealed no significant differences between clinical subgroups. 3D modeling revealed a clustering of missense variants in the tertiary structure of RNF213 potentially affecting zinc-binding suggesting a gain-of-function or dominant negative effect. CONCLUSION: De novo missense variants in RNF213 clustering in the E3 RING or other regions affecting zinc-binding lead to an early-onset syndrome characterized by stroke or Leigh syndrome.


Subject(s)
Leigh Disease , Moyamoya Disease , Stroke , Humans , Child , Moyamoya Disease/genetics , Leigh Disease/complications , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Zinc , Genetic Predisposition to Disease , Adenosine Triphosphatases/genetics
4.
Am J Hum Genet ; 111(1): 200-210, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38118446

ABSTRACT

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Subject(s)
GTP-Binding Proteins , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Animals , Humans , Drosophila melanogaster/genetics , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Drosophila Proteins/genetics
5.
Expert Rev Mol Diagn ; 23(11): 999-1010, 2023.
Article in English | MEDLINE | ID: mdl-37754746

ABSTRACT

BACKGROUND: Persistent hyperCKemia results from muscle dysfunction often attributed to genetic alterations of muscle-related genes, such as the dystrophin gene (DMD). Retrospective assessment of findings from DMD analysis, in association with persistent HyperCKemia, was conducted. PATIENTS AND METHODS: Evaluation of medical records from 1354 unrelated cases referred during the period 1996-2021. Assessment of data concerning the detection of DMD gene rearrangements and nucleotide variants. RESULTS: A total of 730 individuals (657 cases, 569 of Greek and 88 of Albanian origins) were identified, allowing an overall estimation of dystrophinopathy incidence at ~1:3800 live male births. The heterogeneous spectrum of 275 distinct DMD alterations comprised exon(s) deletions/duplications, nucleotide variants, and rare events, such as chromosome translocation {t(X;20)}, contiguous gene deletions, and a fused gene involving the DMD and the DOCK8 genes. Ethnic-specific findings include a common founder variant in exon 36 ('Hellenic' variant). CONCLUSIONS: Some 50% of hyperCKemia cases were characterized as dystrophinopathies, highlighting that DMD variants may be considered the most common cause of hyperCKemia in Greece. Delineation of the broad genetic and clinical heterogeneity is fundamental for actionable public health decisions and theragnosis, as well as the establishment of guidelines addressing ethical considerations, especially related to the mild asymptomatic patient subgroup.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Humans , Male , Dystrophin/genetics , Greece/epidemiology , Guanine Nucleotide Exchange Factors , Muscle Weakness , Muscular Dystrophy, Duchenne/diagnosis , Nucleotides , Retrospective Studies
6.
Genes (Basel) ; 14(7)2023 07 21.
Article in English | MEDLINE | ID: mdl-37510394

ABSTRACT

Whole-Exome Sequencing (WES) has proven valuable in the characterization of underlying genetic defects in most rare diseases (RDs). Copy Number Variants (CNVs) were initially thought to escape detection. Recent technological advances enabled CNV calling from WES data with the use of accurate and highly sensitive bioinformatic tools. Amongst 920 patients referred for WES, 454 unresolved cases were further analysed using the ExomeDepth algorithm. CNVs were called, evaluated and categorized according to ACMG/ClinGen recommendations. Causative CNVs were identified in 40 patients, increasing the diagnostic yield of WES from 50.7% (466/920) to 55% (506/920). Twenty-two CNVs were available for validation and were all confirmed; of these, five were novel. Implementation of the ExomeDepth tool promoted effective identification of phenotype-relevant and/or novel CNVs. Among the advantages of calling CNVs from WES data, characterization of complex genotypes comprising both CNVs and SNVs minimizes cost and time to final diagnosis, while allowing differentiation between true or false homozygosity, as well as compound heterozygosity of variants in AR genes. The use of a specific algorithm for calling CNVs from WES data enables ancillary detection of different types of causative genetic variants, making WES a critical first-tier diagnostic test for patients with RDs.


Subject(s)
Algorithms , Rare Diseases , Humans , Exome Sequencing , DNA Copy Number Variations/genetics , Data Analysis
7.
Hormones (Athens) ; 22(3): 515-520, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37493943

ABSTRACT

PURPOSE: IGSF1 deficiency syndrome (immunoglobulin superfamily member 1) is considered the most common sex-linked cause of secondary congenital hypothyroidism and is characterized by a wide variety of other clinical and biochemical features, including hypoprolactinemia, transient and partial growth hormone deficiency, early/normal timing of testicular enlargement but delayed testosterone rise in puberty, and adult macro-orchidism. Congenital central hypothyroidism is a rare disease (1:65,000 births); the detection of which may be delayed and missed by neonatal screening programs since most neonatal screening programs are based on TSH determination in dried blood spots only. Untreated hypothyroidism may cause abnormal liver biochemistry and non-alcoholic fatty liver disease. Our aim is to report a case of secondary hypothyroidism in an infant with an uncommon initial presentation. CASE PRESENTATION (METHODS/RESULTS): A 3-month-old male baby was referred to our hospital due to elevated alpha-fetoprotein levels, hypercholesterolemia, and macrosomia. Initial investigations revealed enlarged fatty liver and central hypothyroidism. Pituitary insufficiency was biochemically excluded and a pituitary MRI showed normal findings. Upon genetic analysis, a hemizygous variant NM_001170961.1:c.2422dup, p.(His808Profs*14), in IGSF1 gene was detected, establishing the diagnosis of the IGSF1 deficiency syndrome. In our patient, no other clinical findings were identified. Treatment with levothyroxine led to the remission of liver disease. CONCLUSION: Liver disease may be the initial presentation of secondary hypothyroidism in neonates and infants. Macrosomia in patients with isolated secondary central hypothyroidism is a strong indicator of IGSF1 syndrome.


Subject(s)
Congenital Hypothyroidism , Infant, Newborn, Diseases , Non-alcoholic Fatty Liver Disease , Infant , Adult , Infant, Newborn , Female , Humans , Male , Hepatomegaly/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Fetal Macrosomia/drug therapy , Congenital Hypothyroidism/complications , Congenital Hypothyroidism/diagnosis , Congenital Hypothyroidism/drug therapy , Thyroxine/therapeutic use , Syndrome , Thyrotropin , Immunoglobulins/genetics , Membrane Proteins/genetics
8.
Mol Syndromol ; 14(3): 225-230, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37323200

ABSTRACT

Introduction: Non-syndromic polydactyly has been associated with pathogenic variants in 11 genes until today, including IQCE gene. More precisely, loss-of-function of IQCE is associated with the autosomal recessive disorder postaxial polydactyly type A7 (PAPA7, MIM #617642). Case Presentation: A 3-year-old female patient was referred to our genetics department with postaxial polydactyly, syndactyly, brachydactyly, and hypoplastic teeth. Through whole-exome sequencing (WES), a pathogenic IQCE variant was identified (c.895_904del) in the homozygous state, which adequately explained the disease phenotype of our patient. However, copy number variant (CNV) analysis from WES data, using ExomeDepth, revealed a novel, likely pathogenic large deletion involving IQCE genomic regions (DEL:chr7:2606751_2641098) encompassing exons 2-18 of the gene. Conclusion: IQCE gene codes for a 695-amino acid protein located at the base of the primary cilia that positively regulates the Hedgehog signaling pathway. This case report represents the first description of a large deletion in IQCE and indicates that implementation of ExomeDepth in routine WES analysis can contribute valuable information toward elucidating the correct etiology of rare genetic diseases, increasing the diagnostic yield, and minimizing the need for additional tests.

9.
Expert Rev Mol Diagn ; 23(1): 85-103, 2023 01.
Article in English | MEDLINE | ID: mdl-36714946

ABSTRACT

OBJECTIVES: Genetics of epilepsy are highly heterogeneous and complex. Lesions detected involve genes encoding various types of channels, transcription factors, and other proteins implicated in numerous cellular processes, such as synaptogenesis. Consequently, a wide spectrum of clinical presentations and overlapping phenotypes hinders differential diagnosis and highlights the need for molecular investigations toward delineation of underlying mechanisms and final diagnosis. Characterization of defects may also contribute valuable data on genetic landscapes and networks implicated in epileptogenesis. METHODS: This study reports on genetic findings from exome sequencing (ES) data of 107 patients with variable types of seizures, with or without additional symptoms, in the context of neurodevelopmental disorders. RESULTS: Multidisciplinary evaluation of ES, including ancillary detection of copy number variants (CNVs) with the ExomeDepth tool, supported a definite diagnosis in 59.8% of the patients, reflecting one of the highest diagnostic yields in epilepsy. CONCLUSION: Emerging advances of next-generation technologies and 'in silico' analysis tools offer the possibility to simultaneously detect several types of variations. Wide assessment of variable findings, specifically those found to be novel and least expected, reflects the ever-evolving genetic landscape of seizure development, potentially beneficial for increased opportunities for trial recruitment and enrollment, and optimized, even personalized, medical management.


Subject(s)
Epilepsy , Exome , Humans , Exome/genetics , Epilepsy/diagnosis , Epilepsy/genetics , Phenotype , DNA Copy Number Variations , Genomics
10.
Menopause ; 29(4): 491-495, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013061

ABSTRACT

OBJECTIVE: Premature ovarian insufficiency is a heterogeneous condition that can be caused by several factors, such as genetic, environmental, etc. and represents one of the main causes of female infertility. One of the genes implicated is GDF9, which encodes a member of the transforming growth factor-beta superfamily that participates in the coordination of somatic cell activity, female fertility, including folliculogenesis, and oocyte maturation. Damaging variants in GDF9-encoded growth factors can cause the production of inhibin, perturb oocyte granulosa cell microenvironments, and obstruct follicle development. A novel GDF9 variant is herein reported to consolidate the role of GDF9 in ovarian function and female fertility. METHODS: A 38-year-old female was referred for the investigation of secondary amenorrhea. Eventually, she was referred for genetic evaluation whereby conventional karyotyping and Fragile-X molecular testing were normal. Whole Exome Sequencing was performed, followed by targeted Sanger sequencing in all family members for variant confirmation and evaluation. RESULTS: In this study we report a patient presenting with secondary amenorrhea due to premature ovarian failure and a pituitary lesion with radiological characteristics compatible with a Rathke cyst or a macroadenoma, residing between the adenohypophysis and neurohypophysis. Whole Exome Sequencing revealed a novel heterozygous stoploss variant c.1364A>C, p.(*455Serext*8) in the GDF9 gene. CONCLUSIONS: Should the predicted elongated GDF9 protein and differentially configurated GDF9 mature protein molecule form unstable dimers, rapid proteolytic degradation may take place and inhibit homo/heterodimer formation.


Subject(s)
Menopause, Premature , Ovarian Diseases , Primary Ovarian Insufficiency , Amenorrhea/genetics , Female , Growth Differentiation Factor 9/genetics , Growth Differentiation Factor 9/metabolism , Humans , Oocytes/metabolism , Primary Ovarian Insufficiency/genetics
11.
Am J Med Genet A ; 185(8): 2561-2571, 2021 08.
Article in English | MEDLINE | ID: mdl-34008892

ABSTRACT

About 6000 to 7000 different rare disorders with suspected genetic etiologies have been described and almost 4500 causative gene(s) have been identified. The advent of next-generation sequencing (NGS) technologies has revolutionized genomic research and diagnostics, representing a major advance in the identification of pathogenic genetic variations. This study presents a 3-year experience from an academic genetics center, where 400 patients were referred for genetic analysis of disorders with unknown etiology. A phenotype-driven proband-only exome sequencing (ES) strategy was applied for the investigation of rare disorders, in the context of optimizing ES diagnostic yield and minimizing costs and time to definitive diagnosis. Overall molecular diagnostic yield reached 53% and characterized 243 pathogenic variants in 210 cases, 85 of which were novel and 148 known, contributing information to the community of disease and variant databases. ES provides an opportunity to resolve the genetic etiology of disorders and support appropriate medical management and genetic counseling. In cases with complex phenotypes, the identification of complex genotypes may contribute to more comprehensive clinical management. In the context of effective multidisciplinary collaboration between clinicians and laboratories, ES provides an efficient and appropriate tool for first-tier genomic analysis.


Subject(s)
Genetic Association Studies , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genetic Variation , Phenotype , Clinical Decision-Making , Disease Management , Female , Genetic Association Studies/methods , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Male , Rare Diseases , Exome Sequencing , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...