Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Electromyogr Kinesiol ; 73: 102837, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951033

ABSTRACT

This study aims to identify how spatial distribution of lumbar muscle activity is modulated by different fatigue tasks. Twenty healthy adults performed two different isometric trunk extension endurance tasks (the modified Sorensen test and the inverted modified Sorensen test) until exhaustion. During these tasks, bilateral superficial lumbar muscle activity was recorded using high-density electromyography. The spatial distribution of activation within these muscles was obtained using the centroid coordinates in the medio-lateral and cranio-caudal directions. The effects of task and endurance time (left and right sides) were investigated using repeated measures ANOVA. Results revealed a significant lateral shift of the centroid throughout the fatigue tasks on both sides and no difference between tasks. Significant task × time interaction effects were found for the cranio-caudal direction on both sides showing a significantly more caudal location of the centroid in the modified Sorensen test compared to the inverted test at the beginning of the tasks. Our findings suggest that spatial distribution of lumbar muscle activity is task-dependent in a pre-fatigue stage while an alternative but similar muscle recruitment strategy is used in both tasks to maintain performance in the later stages of muscle fatigue.


Subject(s)
Lumbosacral Region , Muscle, Skeletal , Adult , Humans , Muscle, Skeletal/physiology , Lumbosacral Region/physiology , Muscle Fatigue/physiology , Electromyography/methods
2.
Eur J Appl Physiol ; 123(10): 2191-2202, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37247004

ABSTRACT

PURPOSE: To investigate if the recruitment of different regions within the lumbar extensor muscles in response to unexpected perturbations depends on trunk posture. METHODS: In a semi-seated posture, healthy adult participants experienced unexpected posterior-anterior trunk perturbations in three different postures: neutral, trunk flexion and left trunk rotation. High-density surface electromyography was used to identify the regional distribution of activation within the lumbar erector spinae muscles. The effect of posture and side (left vs right) on muscle activity and centroid coordinates was investigated at baseline and in response to perturbations. RESULTS: Higher muscle activity was observed in trunk flexion compared to neutral and rotation postures at baseline (multiple p < 0.001) and in response to the perturbation (multiple p < 0.01). At baseline, the centroid of the electromyographic amplitude distribution was localized more medially in trunk flexion compared to trunk neutral posture (p = 0.003), while activation was localized more laterally in response to the perturbation (multiple p < 0.05). When the trunk was rotated, the electromyographic amplitude distribution was localized more cranially on the left than the right side, both at baseline (p = 0.001) and in response to the perturbation (p = 0.001). Finally, a more lateral location of the centroid on the left side in rotation compared to neutral posture was observed in response to the perturbation (multiple p < 0.001). CONCLUSIONS: Regional differences in the distribution of electromyographic amplitude indicate that different muscle regions were recruited in different trunk postures and in response to perturbations, possibly based on regional mechanical advantage of the erector spinae muscle fibers.


Subject(s)
Muscle Contraction , Posture , Adult , Humans , Muscle Contraction/physiology , Posture/physiology , Muscle, Skeletal/physiology , Electromyography , Muscles , Paraspinal Muscles
3.
J Sports Sci ; 40(11): 1255-1264, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35389326

ABSTRACT

This study was designed to identify neuromuscular adaptations of low back pain (LBP) cyclists , and the impact of a cycling effort on spinal shrinkage. Forty-eight trained cyclists rode their road bike on a smart trainer for 1-hour. Surface electromyography (EMG) recorded muscle activity of the lumbar erector spinae (LES), 3D motion analysis system recorded kinematic of the trunk, and stadiometry measured spinal height. Statistical comparisons were made using repeated measure ANOVAs. The LBP group presented increase in pain levels throughout the effort (p < 0.001). A significant group difference was only observed for the thoracic angle (p = 0.03), which was less flexed for LBP. The one-hour cycling effort (time effect) significantly increased the trunk flexion (p < 0.001) and thoracic flexion (p < 0.001) for both groups. Significant lower LES activation (35% less) was observed at the end of the effort  as well as a decrease in spinal height (p = 0.01) for both groups. Neuromuscular adaptations to cycling effort is identified by a decrease in LES EMG amplitude and an increase flexion of the trunk. Adaptation to pain is seen by an increase in thoracic flexion. Despite these adaptations, LBP cyclists could not ride their bike pain-free.


Subject(s)
Low Back Pain , Biomechanical Phenomena , Electromyography , Humans , Lumbosacral Region/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology
4.
BMC Public Health ; 21(1): 1086, 2021 06 06.
Article in English | MEDLINE | ID: mdl-34090415

ABSTRACT

BACKGROUND: The current sanitary crisis brought on by the COVID-19 recently forced a large proportion of workers to adopt telecommuting with limited time to plan transition. Given that several work-related risk factors are associated with headache and neck pain, it seems important to determine those associated with headache and neck pain in telecommuters. The main objective of this study was to identify which telecommuting and individual associated factors are related with headache and neck pain occurrence in telecommuters over a five days follow-up. The second objective was to evaluate the impact of wearing a headset on headache and neck pain intensity in telecommuters. METHODS: One hundred and sixty-two participants in telecommuting situation were recruited. Baseline assessment included sociodemographic data, headache and neck pain-related disability (6-item Headache Impact Test (HIT-6) and Neck Bournemouth Questionnaire (NBQ)), headache and neck pain frequency and intensity as well as questions about the wearing of a headset (headset wearing, headset type and headset wearing hours). A prospective data collection of headache, neck pain and headset wearing was conducted using daily e-mail over a 5-day follow-up. A stepwise multivariate regression model was performed to determine associated factors of headache or neck pain occurrence during the follow-up. A t-test was conducted to assess the impact of headset wearing on headache and neck pain intensity during the follow-up. RESULTS: Regarding headache, the stepwise multivariate regression model showed that the HIT-6 score was associated with future headache occurrence in telecommuters (OR (95% CI) = 1.094 (1.042-1.148); R2 = 0.094; p <  0.001). For neck pain, the stepwise multivariate regression showed that the NBQ score was related to future neck pain occurrence in telecommuters (OR (95% CI) = 1.182 (1.102-1.269); R2 = 0.182; p <  0.001). T-test showed no difference between participants that wore a headset and participant that did not wore a headset on mean headache (p = 0.94) and neck pain (p = 0.56) intensity during the five days follow-up. CONCLUSION: Although several work-related risk factors are associated with headache and neck pain in workers, telecommuting did not present the same risks. Working set-up did not have a significant impact on headache and neck pain as headache-related disability was the only associated factor of future headache episodes and neck-pain related disability was the only associated factor of future neck pain episodes. Also, wearing a headset had no impact on headache and neck pain in telecommuters.


Subject(s)
COVID-19 , Neck Pain , Follow-Up Studies , Headache/epidemiology , Headache/etiology , Humans , Neck Pain/epidemiology , Neck Pain/etiology , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...