Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect Dis ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041838

ABSTRACT

BACKGROUND: Sepsis is a life-threatening syndrome with complex pathophysiology and great clinical heterogeneity which complicates the delivery of personalized therapies. Our goals were to demonstrate that some biomarkers identified as regulatory immune checkpoints in preclinical studies could 1)improve sepsis prognostication based on clinical variables and 2)guide the stratification of septic patients in subgroups with shared characteristics of immune response or survival outcomes. METHODS: We assayed the soluble counterparts of 12 biomarkers of immune response in 113 internal medicine patients with bacterial sepsis. RESULTS: IL-1 receptor-associated kinase M (IRAK-M) exhibited the highest hazard ratios (HRs) for increased 7-day (1.94 [1.17-3.20]) and 30-day mortality (1.61 [1.14-2.28]). HRs of IRAK-M and Galectin-1 for predicting 1-year mortality were 1.52 (1.20-1.92) and 1.64 (1.13-2.36), respectively. A prognostic model including IRAK-M, Galectin-1, and clinical variables (Charlson Comorbidty Index, multiple source of sepsis, and SOFA score) had high discrimination for death at 7 days and 30 days (area under the curve 0.90 [0.82-0.99]) and 0.86 [0.79-0.94], respectively). Patients with elevated serum levels of IRAK-M and Galectin-1 had clinical traits of immune suppression and low survival rates. None of the 12 biomarkers were independent predictors of 2-year mortality. CONCLUSIONS: Two inhibitory immune checkpoint biomarkers (IRAK-M and Galectin-1) helped identify 3 distinct sepsis phenotypes with distinct prognoses. These biomarkers shed light on the interplay between immune dysfunction and prognosis in patients with bacterial sepsis and may prove to be useful prognostic markers, therapeutic targets, and biochemical markers for targeted enrollment in targeted therapeutic trials.

2.
N Biotechnol ; 37(Pt A): 80-89, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-27576102

ABSTRACT

Although in recent years several methods have been studied and developed to obtain different types of nanosized drug delivery systems, the set up of suitable procedures and materials remains highly expensive, their preparation is time consuming and often not feasible for a scale-up process. Furthermore, the sterilisation and storage of nanocarrier formulations represents a complicated but mandatory step for their effective use. In our previous work we assessed the use of an autoclaving process to achieve, in one simple step, sterile self-assembled hyaluronan-cholesterol (HA-CH) and hyaluronan-riboflavin (HA-Rfv) nanohydrogels (NHs). In the present work, the effect of the high temperature on HA-CH has been studied in detail. HA-CH suspensions were characterised in terms of size and polydispersity by Dynamic Light Scattering at different temperatures and conditions; the HA-CH chemical structure and its molecular weight were assessed via FT-IR and GPC analysis after the sterilising cycle in an autoclave at 121°C for 20min. The obtained NHs were then observed with TEM and AFM microscopy, in both dry and liquid conditions. The Young's modulus of the NHs was determined, evidencing the soft nature of these nanosystems; the critical aggregation concentration (c.a.c) of the nanosuspension was also assessed. Thereafter, alginate lyase (AL) was conjugated to NHs, with the aim of developing a useful system for therapies against bacterial infections producing alginate biofilms. The conjugation efficiency and the enzymatic activity of AL were determined after immobilisation. The AL-NHs system showed the ability to depolymerise alginate, offering an opportunity to be a useful nanosystem for the treatment of biofilm-associated infections.


Subject(s)
Drug Carriers/chemistry , Nanostructures/chemistry , Polysaccharide-Lyases/administration & dosage , Alginates/metabolism , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Bacterial Infections/therapy , Biofilms , Biotechnology , Cholesterol/chemistry , Drug Delivery Systems , Humans , Hyaluronic Acid/chemistry , Hydrogels , Nanostructures/ultrastructure , Polysaccharide-Lyases/metabolism
3.
Anal Bioanal Chem ; 399(9): 3117-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20931176

ABSTRACT

A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV-XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by (13)C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC-MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL