Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 1898: 69-80, 2019.
Article in English | MEDLINE | ID: mdl-30570724

ABSTRACT

We describe a recombineering-based method for the genetic manipulation of lytically replicating bacteriophages, focusing on mycobacteriophages. The approach utilizes recombineering-proficient strains of Mycobacterium smegmatis and employs a cotransformation strategy with purified phage genomic DNA and a mutagenic substrate, which selects for only those cells that are competent to take up DNA. The cotransformation method, combined with the high rates of recombination obtained in M. smegmatis recombineering strains, allows for the efficient and rapid generation of bacteriophage mutants.


Subject(s)
Bacteriophages/genetics , DNA/genetics , Mycobacterium smegmatis/genetics , Recombination, Genetic , Bacteriophages/chemistry , DNA/chemistry , Electrochemotherapy , Electroporation , Genetic Engineering , Mutagenesis/genetics , Mycobacterium smegmatis/virology
2.
BMC Microbiol ; 18(1): 19, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29490612

ABSTRACT

BACKGROUND: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. RESULTS: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. CONCLUSIONS: Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.


Subject(s)
Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Cheese/virology , Genome, Viral , Phylogeny , Propionibacterium acnes/virology , Propionibacterium freudenreichii/virology , Bacteriophages/ultrastructure , Base Composition , Base Sequence , Cheese/microbiology , Chromosome Mapping , Genetic Variation , Genomics , Host Specificity , Lysogeny , Molecular Sequence Annotation , Prophages/genetics , Propionibacteriaceae/virology , Propionibacterium/virology , Whole Genome Sequencing
3.
Ann Dermatol ; 29(6): 688-698, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29200756

ABSTRACT

BACKGROUND: Acne vulgaris is a disease of the pilosebaceous unit characterized by increased sebum production, hyperkeratinization, and immune responses to Propionibacterium acnes (PA). Here, we explore a possible mechanism by which a lipid receptor, G2A, regulates immune responses to a commensal bacterium. OBJECTIVE: To elucidate the inflammatory properties of G2A in monocytes in response to PA stimulation. Furthermore, our study sought to investigate pathways by which lipids modulate immune responses in response to PA. METHODS: Our studies focused on monocytes collected from human peripheral blood mononuclear cells, the monocytic cell line THP-1, and a lab strain of PA. Our studies involved the use of enzyme-linked immunosorbent, Western blot, reverse transcription polymerase chain reaction, small interfering RNA (siRNA), and microarray analysis of human acne lesions in the measurements of inflammatory markers. RESULTS: G2A gene expression is higher in acne lesions compared to normal skin and is inducible by the acne therapeutic, 13-cis-retinoic acid. In vitro, PA induces both the Toll-like receptor 2-dependent expression of G2A as well as the production of the G2A ligand, 9-hydroxyoctadecadienoic acid, from human monocytes. G2A gene knockdown through siRNA enhances PA stimulation of interleukin (IL)-6, IL-8, and IL-1ß possibly through increased activation of the ERK1/2 MAP kinase and nuclear factor kappa B p65 pathways. CONCLUSION: G2A may play a role in quelling inflammatory cytokine response to PA, revealing G2A as a potential attenuator of inflammatory response in a disease associated with a commensal bacterium.

4.
FEMS Microbiol Lett ; 344(2): 166-72, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23651353

ABSTRACT

Bacteriophage Recombineering of Electroporated DNA (BRED) has been described for construction of gene deletion and point mutations in mycobacteriophages. Using BRED, we inserted a Phsp60-egfp cassette (1143 bp) into the mycobacteriophage D29 genome to construct a new reporter phage, which was used for detection of mycobacterial cells. The cassette was successfully inserted and recombinant mycobacteriophage purified. DNA sequencing of the cassette did not show any mutations even after several phage generations. Mycobacterium smegmatis mc(2) 155 cells were infected with D29::Phsp60-egfp (MOI of 10) and evaluated for EGFP expression by microscopy. Fluorescence was observed at around 2 h after infection, but dissipated in later times because of cell lysis. We attempted to construct a lysis-defective mutant by deleting the lysA gene, although we were unable to purify the mutant to homogeneity even with complementation. These observations demonstrate the ability of BRED to insert c. 1 kbp-sized DNA segments into mycobacteriophage genomes as a strategy for constructing new diagnostic reporter phages.


Subject(s)
Genes, Reporter , Green Fluorescent Proteins/genetics , Mycobacteriophages/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/virology , Electroporation , Green Fluorescent Proteins/metabolism , Lysogeny , Mycobacteriophages/physiology , Mycobacterium smegmatis/metabolism , Promoter Regions, Genetic , Sequence Deletion
5.
Mol Microbiol ; 88(3): 577-89, 2013 May.
Article in English | MEDLINE | ID: mdl-23560716

ABSTRACT

Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny.


Subject(s)
DNA Replication , Gene Expression Regulation, Viral , Genes, Essential , Genome, Viral , Mycobacteriophages/genetics , Virus Replication , Chromatography, Liquid , Gene Deletion , Lysogeny , Mycobacteriophages/physiology , Mycobacterium smegmatis/virology , Promoter Regions, Genetic , RNA, Small Untranslated/genetics , Repressor Proteins , Tandem Mass Spectrometry , Transcription, Genetic , Viral Proteins/genetics
6.
Virology ; 434(2): 187-201, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23084079

ABSTRACT

The complete genome sequences of over 220 mycobacteriophages reveal them to be highly diverse, with numerous types sharing little or no nucleotide sequence identity with each other. We have determined the preferences of these phages for Mycobacterium tuberculosis and for other strains of Mycobacterium smegmatis, and find there is a correlation between genome type (cluster, subcluster, singleton) and host range. For many of the phages, expansion of host range occurs at relatively high frequencies, and we describe several examples in which host constraints occur at early stages of infection (adsorption or DNA injection), and phages have the ability to expand their host range through mutations in tail genes. We present a model in which phage diversity is a function of both the ability of phages to rapidly adapt to new hosts and the richness of the diversity of the bacterial population from which those phages are isolated.


Subject(s)
Genetic Variation , Host Specificity , Mycobacteriophages/classification , Mycobacteriophages/physiology , Mycobacterium smegmatis/virology , Mycobacterium tuberculosis/virology , Cluster Analysis , Genome, Viral , Genotype , Mycobacteriophages/genetics
7.
mBio ; 3(5)2012.
Article in English | MEDLINE | ID: mdl-23015740

ABSTRACT

UNLABELLED: Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. IMPORTANCE: Propionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne.


Subject(s)
Bacteriolysis , Bacteriophages/classification , Bacteriophages/physiology , Genetic Variation , Propionibacterium acnes/isolation & purification , Propionibacterium acnes/virology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Base Composition , DNA, Viral/chemistry , DNA, Viral/genetics , Genes, Viral , Genome, Viral , Host Specificity , Humans , Molecular Sequence Data , Sebaceous Glands/microbiology , Sebaceous Glands/virology , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Skin/microbiology , Skin/virology , Synteny
8.
Bacteriophage ; 2(1): 5-14, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22666652

ABSTRACT

Recombineering, a recently developed technique for efficient genetic manipulation of bacteria, is facilitated by phage-derived recombination proteins and has the advantage of using DNA substrates with short regions of homology. This system was first developed in E. coli but has since been adapted for use in other bacteria. It is now widely used in a number of different systems for a variety of purposes, and the construction of chromosomal gene knockouts, deletions, insertions, point mutations, as well as in vivo cloning, mutagenesis of bacterial artificial chromosomes and phasmids, and the construction of genomic libraries has been reported. However, these methods also can be effectively applied to the genetic modification of bacteriophage genomes, in both their prophage and lytically growing states. The ever-growing collection of fully sequenced bacteriophages raises more questions than they answer, including the unknown functions of vast numbers of genes with no known homologs and of unknown function. Recombineering of phage genomes is central to addressing these questions, enabling the simple construction of mutants, determination of gene essentiality, and elucidation of gene function. In turn, advances in our understanding of phage genomics should present similar recombineering tools for dissecting a multitude of other genetically naïve bacterial systems.

9.
Microbiology (Reading) ; 155(Pt 9): 2962-2977, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19556295

ABSTRACT

Mycobacteriophages BPs, Angel and Halo are closely related viruses isolated from Mycobacterium smegmatis, and possess the smallest known mycobacteriophage genomes, 41,901 bp, 42,289 bp and 41,441 bp, respectively. Comparative genome analysis reveals a novel class of ultra-small mobile genetic elements; BPs and Halo each contain an insertion of the proposed mobile elements MPME1 and MPME2, respectively, at different locations, while Angel contains neither. The close similarity of the genomes provides a comparison of the pre- and post-integration sequences, revealing an unusual 6 bp insertion at one end of the element and no target duplication. Nine additional copies of these mobile elements are identified in a variety of different contexts in other mycobacteriophage genomes. In addition, BPs, Angel and Halo have an unusual lysogeny module in which the repressor and integrase genes are closely linked. The attP site is located within the repressor-coding region, such that prophage formation results in expression of a C-terminally truncated, but active, form of the repressor.


Subject(s)
Interspersed Repetitive Sequences , Mycobacteriophages/genetics , Attachment Sites, Microbiological , Base Sequence , DNA, Viral/analysis , DNA, Viral/genetics , Genes, Viral , Genetic Variation , Genomics , Lysogeny/genetics , Microscopy, Electron, Transmission , Molecular Sequence Data , Mycobacteriophages/isolation & purification , Mycobacteriophages/ultrastructure , Mycobacterium smegmatis/virology , Mycobacterium tuberculosis/virology , Sequence Analysis, DNA
10.
PLoS One ; 3(12): e3957, 2008.
Article in English | MEDLINE | ID: mdl-19088849

ABSTRACT

Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED), in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.


Subject(s)
Bacteriophage lambda/genetics , Electroporation/methods , Genetic Engineering/methods , Genome, Viral , Transgenes , Cloning, Molecular/methods , Gene Deletion , Mutagenesis/physiology
11.
Nat Rev Microbiol ; 6(11): 851-7, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18923412

ABSTRACT

Bacteriophages are central components in the development of molecular tools for microbial genetics. Mycobacteriophages have proven to be a rich resource for tuberculosis genetics, and the recent development of a mycobacterial recombineering system based on mycobacteriophage Che9c-encoded proteins offers new approaches to mycobacterial mutagenesis. Expression of the phage exonuclease and recombinase substantially enhances recombination frequencies in both fast- and slow-growing mycobacteria, thereby facilitating construction of both gene knockout and point mutants; it also provides a simple and efficient method for constructing mycobacteriophage mutants. Exploitation of host-specific phages thus provides a general strategy for recombineering and mutagenesis in genetically naive systems.


Subject(s)
Exonucleases/metabolism , Mutagenesis , Mycobacteriophages/genetics , Mycobacterium/genetics , Recombinases/metabolism , Viral Proteins/metabolism , Exonucleases/genetics , Gene Deletion , Mycobacterium/virology , Point Mutation , Recombinases/genetics , Viral Proteins/genetics
12.
J Bacteriol ; 190(6): 2172-82, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18178732

ABSTRACT

A characteristic feature of bacteriophage genomes is that they are architecturally mosaic, with each individual genome representing a unique assemblage of individual exchangeable modules. Plausible mechanisms for generating mosaicism include homologous recombination at shared boundary sequences of module junctions, illegitimate recombination in a non-sequence-directed process, and site-specific recombination. Analysis of the novel mycobacteriophage Giles genome not only extends our current perspective on bacteriophage genetic diversity, with more than 60% of the genes unrelated to other mycobacteriophages, but offers novel insights into how mosaic genomes are created. In one example, the integration/excision cassette is atypically situated within the structural gene operon and could have moved there either by illegitimate recombination or more plausibly via integrase-mediated site-specific recombination. In a second example, a DNA segment has been recently acquired from the host bacterial chromosome by illegitimate recombination, providing further evidence that phage genomic mosaicism is generated by nontargeted recombination processes.


Subject(s)
DNA, Bacterial/genetics , Genome, Viral/genetics , Mycobacteriophages/genetics , Recombination, Genetic , Base Sequence , Host-Pathogen Interactions , Microscopy, Electron , Molecular Sequence Data , Mycobacteriophages/physiology , Mycobacteriophages/ultrastructure , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/virology , Operon/genetics , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...