Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci (Basel) ; 10(2)2022 05 26.
Article in English | MEDLINE | ID: mdl-35736348

ABSTRACT

Ovarian cancer accounts for 3% of the total cancers in women, yet it is the fifth leading cause of cancer deaths among women. The BRCA1/2 germline and somatic mutations confer a deficiency of the homologous recombination (HR) repair pathway. Inhibitors of poly (ADP-ribose) polymerase (PARP), another important component of DNA damage repair, are somewhat effective in BRCA1/2 mutant tumors. However, ovarian cancers often reacquire functional BRCA and develop resistance to PARP inhibitors. Polyamines have been reported to facilitate the DNA damage repair functions of PARP. Given the elevated levels of polyamines in tumors, we hypothesized that treatment with the polyamine synthesis inhibitor, α-difluoromethylornithine (DFMO), may enhance ovarian tumor sensitivity to the PARP inhibitor, rucaparib. In HR-competent ovarian cancer cell lines with varying sensitivities to rucaparib, we show that co-treatment with DFMO increases the sensitivity of ovarian cancer cells to rucaparib. Immunofluorescence assays demonstrated that, in the presence of hydrogen peroxide-induced DNA damage, DFMO strongly inhibits PARylation, increases DNA damage accumulation, and reduces cell viability in both HR-competent and deficient cell lines. In vitro viability assays show that DFMO and rucaparib cotreatment significantly enhances the cytotoxicity of the chemotherapeutic agent, cisplatin. These results suggest that DFMO may be a useful adjunct chemotherapeutic to improve the anti-tumor efficacy of PARP inhibitors in treating ovarian cancer.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Eflornithine/pharmacology , Eflornithine/therapeutic use , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Polyamines/pharmacology , Polyamines/therapeutic use
2.
Cancer Biol Ther ; 22(3): 225-237, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33602034

ABSTRACT

BRAF mutations are present in over half of all melanoma tumors. Although BRAF inhibitors significantly improve survival of patients with metastatic melanoma, recurrences occur within several months. We previously reported that BRAF mutant melanoma cells are more sensitive to a novel arylmethyl-polyamine (AP) compound that exploits their increased polyamine uptake compared to that of BRAF wildtype cells. Using an animal model of BRAF inhibitor-resistant melanoma, we show that co-treatment with the BRAF inhibitor, PLX4720, and AP significantly delays the recurrence of PLX4720-resistant melanoma tumors and decreases tumor-promoting macrophages. Development of BRAF inhibitor-resistance enriches for metastatic cancer stem cells (CSC) and increases tumor-promoting macrophages. In vitro studies demonstrated that CD304+, CXCR4+ spheroid cultures of BRAF mutant melanoma cells are resistant to PLX4720 but are more sensitive to AP compared to monolayer cultures of the same cells. AP significantly inhibited YUMM1.7 melanoma cell invasiveness across a Matrigel-coated filter using the CXCR4 ligand, SDF-1α, as the chemoattractant. AP also blocked the chemotactic effect of SDF-1α on CXCR4+ macrophages and inhibited M2 polarization of macrophages. In melanoma-macrophage co-cultures, AP prevented the PLX4720-induced release of pro-tumorigenic growth factors, such as VEGF, from macrophages and prevented the macrophage rescue of BRAF mutant melanoma cells treated with PLX4720. Our study offers a novel therapy (AP) to treat chemo-resistant melanoma. AP is unique because it targets the polyamine transport system in BRAF inhibitor-resistant CSCs and also blocks CXCR4 signaling in invasive melanoma cells and pro-tumorigenic macrophages.


Subject(s)
Drug Resistance, Neoplasm/genetics , Melanoma/genetics , Polyamines/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mutation , Polyamines/pharmacology
3.
Mol Cancer Ther ; 19(10): 2012-2022, 2020 10.
Article in English | MEDLINE | ID: mdl-32747421

ABSTRACT

Despite unprecedented advances in the treatment of cancer through the use of immune checkpoint blockade (ICB), responses are not universal and alternative strategies are needed to enhance responses to ICB. We have shown previously that a novel polyamine blocking therapy (PBT), consisting of cotreatment with α-difluoromethylornithine (DFMO) to block polyamine biosynthesis and a Trimer polyamine transport inhibitor, decreases myeloid-derived suppressor cells (MDSC) and M2-like tumor-associated macrophages (TAM). Both MDSCs and TAMs promote tumor progression, inhibit antitumor immunity, and limit the efficacy of ICB. In this study, we investigated the use of PBT to heighten therapeutic responses to PD-1 blockade in mice bearing 4T1 mammary carcinoma and B16F10 melanoma tumors. Whereas PBT inhibited primary tumor growth in both tumor models, 4T1 lung metastases were also dramatically decreased in mice treated with PBT. Reductions in MDSC and TAM subpopulations in 4T1 tumors from PBT-treated mice were accompanied by reduced cytoprotective autophagy only in tumor-infiltrating MDSC and macrophage subpopulations but not in the lung or spleen. PBT treatment blunted M2-like alternative activation of bone marrow-derived macrophages and reduced STAT3 activation in MDSC cultures while increasing the differentiation of CD80+, CD11c+ macrophages. PBT significantly enhanced the antitumor efficacy of PD-1 blockade in both 4T1 and B16F10 tumors resistant to anti-PD-1 monotherapy, increasing tumor-specific cytotoxic T cells and survival of tumor-bearing animals beyond that with PBT or PD-1 blockade alone. Our results suggest that cotreatment with DFMO and the Trimer polyamine transport inhibitor may improve the therapeutic efficacy of immunotherapies in patients with cancer with resistant tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Myeloid Cells/metabolism , Polyamines/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Female , Humans , Mice
4.
Carcinogenesis ; 40(8): 1042-1051, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31190067

ABSTRACT

Tumor promotion is strongly associated with inflammation and increased polyamine levels. Our understanding of relevant mechanisms responsible for arsenic-induced cancer remains limited. Previous studies suggest that arsenic targets and dysregulates stem cell populations that remain dormant in the skin until promoted to be recruited out of the bulge stem cell region, thus giving rise to skin tumors. In this study, we explored a possible mechanism by which increased keratinocyte polyamine biosynthesis promotes tumorsphere formation and invasiveness of arsenic-transformed HaCaT keratinocytes (As-HaCaT). Unlike parental HaCaT cells, As-HaCaT cells were tumorigenic in athymic nude mice, and the CD45negative epithelial tumor cells had enriched expression of Toll-Like Receptor 4 (TLR4), CD34 and CXCR4 as did As-HaCaT tumorsphere cultures compared to As-HaCaT monolayer cultures. Ornithine decarboxylase (ODC) overexpressing keratinocytes (Ker/ODC) release increased levels of the alarmin high mobility group box 1 (HMGB1). Ker/ODC conditioned medium (CM) stimulated As-HaCaT but not parental HaCaT tumorsphere formation, and this was inhibited by glycyrrhizin, an inhibitor of HMGB1, and by TAK242, an inhibitor of the HMGB1 receptor TLR4. Compared to parental HaCaT cells, As-HaCaT cells demonstrated greater invasiveness across a Matrigel-coated filter using either fibroblast CM or SDF-1α as chemoattractants. Addition of Ker/ODC CM or HMGB1 dramatically increased As-HaCaT invasiveness. Glycyrrhizin and TAK242 inhibited this Ker/ODC CM-stimulated invasion of As-HaCaT cells but not HaCaT cells. These results show that polyamine-dependent release of HMGB1 promotes the expansion of stem cell-like subpopulations in arsenic-transformed keratinocytes while also increasing their invasiveness, suggesting that polyamines may be a potential therapeutic target for the prevention and treatment of arsenic-initiated skin cancers.


Subject(s)
Arsenic/toxicity , Carcinogenesis/drug effects , HMGB1 Protein/genetics , Skin Neoplasms/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glycyrrhizic Acid/pharmacology , Humans , Keratinocytes/drug effects , Keratinocytes/pathology , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Polyamines/metabolism , Signal Transduction/drug effects , Skin/pathology , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...