Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38138736

ABSTRACT

Synovial inflammation in osteoarthritis (OA) is characterized by the release of cartilage-degrading enzymes and inflammatory cytokines. 45S5-bioactive glass (45S5-BG) can modulate inflammation processes; however, its influence on OA-associated inflammation has hardly been investigated. In this study, the effects of 45S5-BG on the release of cartilage-degrading metalloproteinases and cytokines from synovial membrane cells (SM) isolated from patients with knee OA was assessed in vitro. SM were cultivated as SM monocultures in the presence or absence of 45S5-BG. On day 1 (d1) and d7 (d7), the concentrations of Matrix Metalloproteinases (MMPs) and cytokines were assessed. In 45S5-BG-treated SM cultures, MMP9 concentration was significantly reduced at d1 and d7, whilst MMP13 was significantly increased at d7. Concentrations of interleukin (IL)-1B and C-C motif chemokine ligand 2 (CCL2) in 45S5-BG-treated SM cultures were significantly increased at both time points, as were interferon gamma (IFNG) and IL-6 at d7. Our data show an effect of 45S5-BG on SM activity, which was not clearly protective, anti-inflammatory, or pro-inflammatory. The influence of 45S5-BG on MMP release was more suggestive of a cartilage protective effect, but 45S5-BG also increased the release of pro-inflammatory cytokines. Further studies are needed to analyze the effect of BGs on OA inflammation, including the anti-inflammatory modification of BG compositions.

2.
Cancers (Basel) ; 15(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36980753

ABSTRACT

Tumor recurrence is a major problem during the treatment of giant cell tumors of bone (GCTB). We recently identified tumor cell-specific cytotoxic effects of bioactive glasses (BGs) toward neoplastic stromal cells derived from GCTB tissue (GCTSCs) in vitro. Since these data indicated a promising role of BGs in the adjuvant treatment of GCTBs, we aimed to investigate the transferability of the in vitro data into the more complex in vivo situation in the current study. We first analyzed the cytotoxicity of three different BGs in vitro by WST-1 assay after co-cultivation with primary GCTSC cell lines. The effects of BGs on tumor engraftment and growth were analyzed by chicken chorioallantoic membrane (CAM) assays and subsequent quantification of tumor take rates and tumor volumes. In vitro, all tested BGs displayed a cytotoxic effect on GCTSCs that was dependent on BG composition, concentration, and particle size. Comparable effects could be observed within the in vivo environment resulting in reduced tumor take rates and tumor volumes in BG-treated samples. These data indicate a possible clinical application of BGs in the context of GCTB therapy, mediating a reduction of recurrence rates with the simultaneous promotion of bone regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...