Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Sport Nutr Exerc Metab ; 34(3): 137-144, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458183

ABSTRACT

There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.


Subject(s)
Caffeine , Creatine , Humans , Male , Anaerobiosis , Caffeine/pharmacology , Cross-Over Studies , Double-Blind Method , Polyesters
2.
Res Q Exerc Sport ; : 1-8, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271741

ABSTRACT

Background: The benefits of caffeine to physical performance have been extensively demonstrated, however, it has recently been speculated that there is an effect of the administration route on its effectiveness. Purpose: The current study investigated the effect of caffeine mouth rinse in isolation or combined with ingestion on performance in a 30-minute constant-load exercise followed by a 10-km cycling time trial. Methods: Ten physically active men performed a 30-minute constant-load exercise at 50% of the graded test Wmax, followed by a 10-km cycling time trial. Before and at the middle points of the constant-load exercise and 10-km cycling time trial, the following conditions were administered: PLA (cellulose ingestion plus mouth rinsing with magnesium sulfate), ING (5 mg.kg-1 of caffeine ingestion plus mouth rinsing with magnesium sulfate), MR (cellulose ingestion plus mouth rinsing with 1.2% caffeine), and COMB (5 mg.kg-1 of caffeine ingestion plus mouth rinsing with 1.2% caffeine). Results: During the 30-minute constant-load exercise, COMB presented a lower rating of perceived exertion (RPE) than MR (p = .04). For the 10-km time trial, the COMB was faster than MR (MR = 1363 ± 345 vs. COMB = 1291 ± 308s, Δ% = 5.57, p = .05). Mean power output was higher in COMB than PLA, ING, and MR (234 ± 15 vs. 169 ± 29, 148 ± 11, and 145 ± 12 W, respectively). There were no differences between conditions for heart rate and RPE during the 10-km time trial. Conclusion: In summary, caffeine mouth rinsing potentiated the effects of caffeine ingestion during the 10-km time trial compared to caffeine mouth rinsing alone.

3.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35894639

ABSTRACT

While the effects of caffeine ingestion on endurance performance are well known, its effects on cardiopulmonary responses during a maximal graded exercise test have been less explored. This study systematically reviewed and meta-analyzed studies investigating the effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test. A search was performed in four databases, and study quality was assessed using the PEDro scale. Data reported by the selected studies were pooled using random-effects meta-analysis, with selected moderator effects assessed via meta-regression. Twenty-one studies with good and excellent methodological quality were included in this review. Compared to placebo, caffeine increased peak minute ventilation (SMD = 0.33; p = 0.01) and time to exhaustion (SMD = 0.41; p = 0.01). However, meta-regression showed no moderating effects of dosage and timing of caffeine ingestion, stage length, or total length of GXT (all p > 0.05). Caffeine ingestion did not affect peak oxygen uptake (SMD = 0.13; p = 0.42), peak heart rate (SMD = 0.27; p = 0.07), peak blood lactate concentration (SMD = 0.60; p = 0.09), peak tidal volume (SMD = 0.10; p = 0.69), peak breathing frequency (SMD =0.20; p = 0.23), or peak power output (SMD = 0.22; p = 0.28). The results of this systematic review with meta-analysis suggest that caffeine increases time to exhaustion and peak minute ventilation among the cardiopulmonary variables assessed during GXT.

4.
Eur J Appl Physiol ; 122(6): 1497-1507, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35396967

ABSTRACT

PURPOSE: The current study investigated the effect of caffeine on the breathing pattern during a high-intensity whole-body exercise. METHODS: Using a randomized, crossover, counterbalanced, and double-blind design, twelve healthy men ingested either 5 mg.kg-1 of caffeine or cellulose (placebo) one hour before performing a high-intensity whole-body exercise (i.e., work rate corresponding to 80% of the difference between the gas exchange threshold and maximal oxygen uptake) until the limit of tolerance. Ventilatory and metabolic responses were recorded throughout the trial and at task failure. RESULTS: Caffeine ingestion increased time to task failure in relation to the placebo (368.1 ± 49.6 s vs. 328.5 ± 56.6 s, p = 0.005). Caffeine also increased tidal volume and inspiratory time throughout the exercise (p < 0.05). Compared to task failure with placebo, task failure with caffeine intake was marked by higher (p < 0.05) minute ventilation (134.8 ± 16.4 vs. 147.6 ± 18.2 L.min-1), the ventilatory equivalent of oxygen consumption (37.8 ± 4.2 vs. 41.7 ± 5.5 units), and respiratory exchange ratio (1.12 ± 0.10 vs. 1.19 ± 0.11 units). CONCLUSION: In conclusion, ingestion of caffeine alters the breathing pattern by increasing tidal volume and lengthening the inspiratory phase of the respiratory cycle. These findings suggest that caffeine affects the ventilatory system, which may account, in part, for its ergogenic effects during high-intensity whole-body exercises.


Subject(s)
Caffeine , Performance-Enhancing Substances , Caffeine/pharmacology , Double-Blind Method , Exercise/physiology , Humans , Male , Oxygen Consumption , Respiratory Rate
5.
Eur J Sport Sci ; 22(7): 1065-1072, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34003071

ABSTRACT

The present study tested the hypothesis that acute metformin would increase peak power measured during a Wingate test. Fourteen men (24 ± 6 years; 75.8 ± 10.2 kg; 177 ± 7 cm) participated in four test sessions, conducted in a crossover, counterbalanced, double-blind model. The first and second sessions consisted of anthropometric measurements and one Wingate test per day to assess test-retest reliability. In the last two sessions, the Wingate tests were performed on metformin (500 mg capsule, 1 hour before) or placebo (cellulose capsule, 1 hour before) condition. No differences were found between the placebo and metformin for peak power (1056.8 ± 215.8 W vs. 1095.2 ± 199.3 W, respectively; p = 0.24). Mean power (630.9 ± 87.8 W vs. 613.1 ± 94.8 W, respectively; p=0.01) and total work (18928 ± 2633 kJ vs. 18393 ± 2845 kJ, respectively; p = 0.01) in the metformin condition were higher than the placebo. The power were greater in metformin when compared to the placebo in moments 3 (p = 0.01), 4 (p = 0.01), 5 (p = 0.04), 6 (p = 0.04), 7 (p = 0.02), 8 (p = 0.03) and 9 (p = 0.01) seconds. There were no differences between conditions for the peak lactate (p = 0.08) and the rating of perceived exertion (p = 0.84). Acute metformin administration increased the early power phase and the mean power of a Wingate test.


Subject(s)
Exercise Test , Metformin , Muscle Strength , Adult , Cross-Over Studies , Healthy Volunteers , Humans , Lactic Acid/blood , Male , Metformin/administration & dosage , Physical Exertion , Reproducibility of Results , Young Adult
6.
Eur J Appl Physiol ; 122(2): 371-382, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34739602

ABSTRACT

PURPOSE: The study aimed to assess the metabolic impact of elite Brazilian U-20 players using the rating of perceived exertion scale (RPE) to discriminate metabolomics sensitivity post-two soccer games separated by a short recovery interval. METHODS: Urine was collected immediately and then 20 h after two soccer matches of elite Brazilian U-20 players. RPE was collected after games. The spectra were pre-processed using TopSpin®3.2 software. Chenomx®software was used to identify metabolites in the urine through the available database. RESULTS: The results showed that the metabolic pathways related to energy production, cellular damage, and organic stresses were changed immediately after the game. 20 h after the games, antioxidant and anti-inflammatory pathways related to cell recovery were identified (e.g., gallic acid, ascorbate, and betaine). The matrix of positive correlations between metabolites was more predominant and stronger after game 2 than game 1. T-distribution registered metabolites discriminated below and above 7 on the RPE scale. Athletes with higher RPE values showed a high metabolite profile related to muscle damage (e.g., creatine, creatinine, and glycine) and energy production (e.g., creatine, formate, pyruvate, 1,3 dihydroxyacetone) 20 h post-soccer match. There was a different metabolic profile between athletes with higher and lower RPE values. CONCLUSION: Metabolomics analysis made it possible to observe the metabolic impacts of energy production and muscular damage. RPE identified internal load changes within the group as a result of match intensity in soccer. The correlation matrix indicated a greater predominance of positive and strong correlations between metabolites in the second game compared to the first game.


Subject(s)
Athletic Performance/physiology , Metabolomics , Physical Exertion/physiology , Soccer/physiology , Biomarkers/urine , Brazil , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...